Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Therapeutic Nanoparticles from Grapefruit Juice

Published: Monday, June 10, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
Grapefruit-derived nanovectors to deliver targeted drugs to treat cancer.

Researchers used nanoparticles derived from grapefruits to deliver targeted drugs to treat cancer in mice. The technique may prove to be a safe and inexpensive way to make customized therapies.

Nanoparticles are emerging as an efficient tool for drug delivery. Microscopic pouches made of synthetic lipids can serve as a carrier, or vector, to protect drug molecules within the body and deliver them to specific cells.

However, these synthetic nanovectors pose obstacles including potential toxicity, environmental hazards and the cost of large-scale production.

Recently, scientists have found that mammalian exosomes-tiny lipid capsules released from cells-can serve as natural nanoparticles. But making therapeutic nanovectors from mammalian cells poses various production and safety challenges.

A research team led by Dr. Huang-Ge Zhang at the University of Louisville hypothesized that exosome-like nanoparticles from inexpensive, edible plants might be used to make nanovectors to bypass these challenges.

The scientists set out to isolate nanoparticles from the juice of grapefruits, grapes and tomatoes. Their work was funded in part by NIH’s National Cancer Institute (NCI) and National Center for Complementary and Alternative Medicine (NCCAM). The study appeared on May 21, 2013 in Nature Communications.

The researchers found that grapefruit juice yielded the most lipid nanoparticles. They then prepared grapefruit-derived nanovectors (GNVs) and tested them in different cell types. GNVs were taken up by a variety of cells at body temperature.

These nanovectors had no significant effect on cell growth or death rates. They proved to be more stable than a synthetic nanovector and were also taken up by cells more readily.

The scientists next tested the GNVs in mice. Three days after fluorescently labeled GNVs were injected into a tail vein or body cavity, they appeared primarily in the liver, lungs, kidneys and spleen.

After intramuscular injections, GNVs were found predominantly in muscle. After intranasal administration, most were seen in the lung and brain.

Although GNVs could be detected 7 days after tail-vein injection, there were no signs of inflammation or other side effects in the mice from any of the treatments.

In addition, no GNVs appeared to pass through the placenta, suggesting they might be safe during pregnancy.

GNVs proved capable of delivering a broad range of therapeutic agents to targeted cells in culture, including chemotherapy drugs, short interfering RNA (siRNA), a DNA expression vector and antibodies.

The researchers next tested GNVs in mouse models of cancer. GNVs carrying a tumor inhibitor reduced tumor growth and prolonged survival when given intranasally to mice with brain tumors.

When injected into mouse models of colon cancer, GNVs with targeting molecules collected in tumor tissue to deliver therapies and slow tumor growth.

“These nanoparticles, which we’ve named grapefruit-derived nanovectors, are derived from an edible plant, and we believe they are less toxic for patients, result in less biohazardous waste for the environment, and are much cheaper to produce at large scale than nanoparticles made from synthetic materials,” Zhang says.

The GNVs are currently being testing for safety in an early clinical trial of colon cancer patients.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Scientists Adopt New Strategy to Find Huntington’s Disease Therapies
Large, international NIH-supported study uses precision medicine to tackle neurological disorders.
Tuesday, August 11, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!