Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Mouse Study Suggests Lead May Trigger Schizophrenia

Published: Monday, June 10, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
Behavioral and MRI study in mice points to a synergistic relationship between lead exposure and schizophrenia gene.

Mice engineered with a human gene for schizophrenia and exposed to lead during early life exhibited behaviors and structural changes in their brains consistent with schizophrenia. Scientists at Columbia University’s Mailman School of Public Health and the Johns Hopkins University School of Medicine say their findings suggest a synergistic effect between lead exposure and a genetic risk factor, and open an avenue to better understanding the complex gene-environment interactions that put people at risk for schizophrenia and other mental disorders.

Going back to 2004, work by scientists at the Mailman School suggested a connection between prenatal lead exposure in humans and increased risk for schizophrenia later in life. But a big question remained: How could lead trigger the disease? Based on his own research, Tomás R. Guilarte, PhD, senior author of the new study, believed the answer was in the direct inhibitory effect of lead on the N-methyl-D-aspartate receptor (NMDAR), a synaptic connection point important to brain development, learning, and memory. His research in rodents found that exposure to lead blunted the function of the NMDAR.  The glutamate hypothesis of schizophrenia postulates that a deficit in glutamate neurotransmission and specifically hypoactivity of the NMDAR can explain a significant portion of the dysfunction in schizophrenia.

In the new study, Dr. Guilarte, professor and chair of the department of Environmental HealthSciences at the Mailman School, and his co-investigators focused on mice engineered to carry the mutant form of Disrupted-in-Schizophrenia-1 (DISC1), a gene that is a risk factor for the disease in humans. Beginning before birth, half of the mutant DISC1 mice were fed a diet with lead, and half were given a normal diet. A second group of normal mice not expressing the mutant DISC1 gene were also split into the two feeding groups. All mice were put through a battery of behavioral tests and their brains were examined using MRI.

Mutant mice exposed to lead and given a psychostimulant exhibited elevated levels of hyperactivity and were less able to suppress a startle in response to a loud noise after being given an acoustic warning. Their brains also had markedly larger lateral ventricles—empty spaces containing cerebrospinal fluid—compared with other mice. These results mirror what is known about schizophrenia in humans.

While the role of genes in schizophrenia and mental disorders is well established, the effect of toxic chemicals in the environment is only just beginning to emerge. The study’s results focus on schizophrenia, but implications could be broader.

“We’re just scratching the surface,” says Dr. Guilarte. “We used lead in this study, but there are other environmental toxins that disrupt the function of the NMDAR.” One of these is a family of chemicals in air pollution called polycyclic aromatic hydrocarbons or PAHs. “Similarly, any number of genes could be in play,” adds Dr. Guilarte, noting that DISC1 is among many implicated in schizophrenia.

Future research may reveal to what extent schizophrenia is determined by environmental versus genetic factors or their interactions, and what other mental problems might be in the mix. One ongoing study by Dr. Guilarte is looking at whether lead exposure alone can contribute to deficits of one specialized type of neuron called parvalbumin-positive GABAergic interneuron that is known to be affected in the brain of schizophrenia patients. Scientists are also interested to establish the critical window for exposure—whether in utero or postnatal, or both.

“The animal model provides a way forward to answer important questions about the physiological processes underlying schizophrenia,” says Dr. Guilarte.

The study’s first author is Bagrat Abazyan, MD, a post-doctoral fellow in the Behavioral Neurobiology and Neuroimmunology Lab, Department of Psychiatry and Behavioral Sciences at Johns Hopkins School of Medicine, which is led by Mikhail Pletnikov, MD, PhD, senior co-author of the paper and principal developer of the DISC1mouse model. Neuroimaging studies were led by Susumu Mori, PhD, Department of Radiology, also of Johns Hopkins.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Link Between Obesity and Diabetes Found
Targeting a single enzyme that raises both sugar and insulin levels in the obese could prevent and treat diabetes.
Monday, November 25, 2013
Is There a Role for Vitamins in Cancer Prevention?
According to recent national surveys, approximately 40 percent of U.S. adults take multivitamins/multiminerals.
Monday, August 12, 2013
Study Reveals Genes That Drive Brain Cancer
About 15 percent of glioblastoma patients could receive personalized treatment with drugs currently used in other cancers.
Tuesday, August 06, 2013
Key Molecular Pathways Leading to Alzheimer’s Identified
Research approach highlights potential therapeutic targets.
Thursday, July 25, 2013
New Genetic Cause of Pulmonary Hypertension Identified
Study finds druggable target for rare fatal lung disease.
Thursday, July 25, 2013
Mutation Linked to Congenital Urinary Tract Defects
Findings point to new diagnostic category.
Thursday, July 18, 2013
Many Birth Defects in Heart Caused by Spontaneous Mutations
A study has found that at least 10 percent of cases stem from genetic mutations that occur spontaneously early in development.
Thursday, May 30, 2013
Common Childhood Asthma Not Rooted in Allergens, Inflammation
Discovery of origins of a unique form of asthma may lead to a precision medicine approach to treatment.
Friday, May 24, 2013
Looking for the Telltale Gene
A new genetic test allows parents to peer into their unborn children's medical future.
Friday, May 24, 2013
Hundreds of Alterations and Potential Drug Targets to Starve Tumors Identified
A massive study analyzing gene expression data from 22 tumor types has identified multiple metabolic expression changes associated with cancer.
Monday, April 22, 2013
New Gene Associated with Almost Doubled Alzheimer’s Risk in African-Americans
ABCA7, a minor gene variant in whites, is major player in African-Americans.
Wednesday, April 10, 2013
Schizophrenia Gene Networks Found, and a Link to Autism
Although schizophrenia is highly genetic in origin, the genes involved in the disorder have been difficult to identify.
Thursday, November 15, 2012
New de novo Genetic Mutations in Schizophrenia Identified
Columbia University Medical Center (CUMC) researchers have identified dozens of new spontaneous genetic mutations that play a significant role in the development of schizophrenia, adding to the growing list of genetic variants that can contribute to the disease.
Thursday, October 04, 2012
New de novo Genetic Mutations in Schizophrenia Identified
Columbia University Medical Center (CUMC) researchers have identified dozens of new spontaneous genetic mutations that play a significant role in the development of schizophrenia, adding to the growing list of genetic variants that can contribute to the disease.
Thursday, October 04, 2012
Tom Maniatis: A Deep Sense that Science Must Be Shared
History books are filled with the technical advances that made genetic engineering possible, from the discovery of enzymes that cut and paste DNA to the development of techniques for reading the sequence of genes.
Tuesday, September 11, 2012
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
Mathematical Model Helps Show How Zebrafish Get Their Stripes
The iconic yellow and blue stripes of zebrafish form dynamically as young fish develop and grow. A mathematical model developed by Brown University researchers helps to show how pigment cells interact to form the pattern.
Epigenome Influenced by Habitat and Lifestyle
Study on Pygmy hunter-gatherer populations and Bantu farmers in Central Africa shows that habitat and lifestyle can impact the epigenome.
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos