Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mouse Study Suggests Lead May Trigger Schizophrenia

Published: Monday, June 10, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
Behavioral and MRI study in mice points to a synergistic relationship between lead exposure and schizophrenia gene.

Mice engineered with a human gene for schizophrenia and exposed to lead during early life exhibited behaviors and structural changes in their brains consistent with schizophrenia. Scientists at Columbia University’s Mailman School of Public Health and the Johns Hopkins University School of Medicine say their findings suggest a synergistic effect between lead exposure and a genetic risk factor, and open an avenue to better understanding the complex gene-environment interactions that put people at risk for schizophrenia and other mental disorders.

Going back to 2004, work by scientists at the Mailman School suggested a connection between prenatal lead exposure in humans and increased risk for schizophrenia later in life. But a big question remained: How could lead trigger the disease? Based on his own research, Tomás R. Guilarte, PhD, senior author of the new study, believed the answer was in the direct inhibitory effect of lead on the N-methyl-D-aspartate receptor (NMDAR), a synaptic connection point important to brain development, learning, and memory. His research in rodents found that exposure to lead blunted the function of the NMDAR.  The glutamate hypothesis of schizophrenia postulates that a deficit in glutamate neurotransmission and specifically hypoactivity of the NMDAR can explain a significant portion of the dysfunction in schizophrenia.

In the new study, Dr. Guilarte, professor and chair of the department of Environmental HealthSciences at the Mailman School, and his co-investigators focused on mice engineered to carry the mutant form of Disrupted-in-Schizophrenia-1 (DISC1), a gene that is a risk factor for the disease in humans. Beginning before birth, half of the mutant DISC1 mice were fed a diet with lead, and half were given a normal diet. A second group of normal mice not expressing the mutant DISC1 gene were also split into the two feeding groups. All mice were put through a battery of behavioral tests and their brains were examined using MRI.

Mutant mice exposed to lead and given a psychostimulant exhibited elevated levels of hyperactivity and were less able to suppress a startle in response to a loud noise after being given an acoustic warning. Their brains also had markedly larger lateral ventricles—empty spaces containing cerebrospinal fluid—compared with other mice. These results mirror what is known about schizophrenia in humans.

While the role of genes in schizophrenia and mental disorders is well established, the effect of toxic chemicals in the environment is only just beginning to emerge. The study’s results focus on schizophrenia, but implications could be broader.

“We’re just scratching the surface,” says Dr. Guilarte. “We used lead in this study, but there are other environmental toxins that disrupt the function of the NMDAR.” One of these is a family of chemicals in air pollution called polycyclic aromatic hydrocarbons or PAHs. “Similarly, any number of genes could be in play,” adds Dr. Guilarte, noting that DISC1 is among many implicated in schizophrenia.

Future research may reveal to what extent schizophrenia is determined by environmental versus genetic factors or their interactions, and what other mental problems might be in the mix. One ongoing study by Dr. Guilarte is looking at whether lead exposure alone can contribute to deficits of one specialized type of neuron called parvalbumin-positive GABAergic interneuron that is known to be affected in the brain of schizophrenia patients. Scientists are also interested to establish the critical window for exposure—whether in utero or postnatal, or both.

“The animal model provides a way forward to answer important questions about the physiological processes underlying schizophrenia,” says Dr. Guilarte.

The study’s first author is Bagrat Abazyan, MD, a post-doctoral fellow in the Behavioral Neurobiology and Neuroimmunology Lab, Department of Psychiatry and Behavioral Sciences at Johns Hopkins School of Medicine, which is led by Mikhail Pletnikov, MD, PhD, senior co-author of the paper and principal developer of the DISC1mouse model. Neuroimaging studies were led by Susumu Mori, PhD, Department of Radiology, also of Johns Hopkins.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Neurodevelopmental Syndrome Identified
Study pinpoints underlying genetic mutations, raising hopes for targeted therapies.
Friday, April 22, 2016
New Link Between Obesity and Diabetes Found
Targeting a single enzyme that raises both sugar and insulin levels in the obese could prevent and treat diabetes.
Monday, November 25, 2013
Is There a Role for Vitamins in Cancer Prevention?
According to recent national surveys, approximately 40 percent of U.S. adults take multivitamins/multiminerals.
Monday, August 12, 2013
Study Reveals Genes That Drive Brain Cancer
About 15 percent of glioblastoma patients could receive personalized treatment with drugs currently used in other cancers.
Tuesday, August 06, 2013
Key Molecular Pathways Leading to Alzheimer’s Identified
Research approach highlights potential therapeutic targets.
Thursday, July 25, 2013
New Genetic Cause of Pulmonary Hypertension Identified
Study finds druggable target for rare fatal lung disease.
Thursday, July 25, 2013
Mutation Linked to Congenital Urinary Tract Defects
Findings point to new diagnostic category.
Thursday, July 18, 2013
Many Birth Defects in Heart Caused by Spontaneous Mutations
A study has found that at least 10 percent of cases stem from genetic mutations that occur spontaneously early in development.
Thursday, May 30, 2013
Common Childhood Asthma Not Rooted in Allergens, Inflammation
Discovery of origins of a unique form of asthma may lead to a precision medicine approach to treatment.
Friday, May 24, 2013
Looking for the Telltale Gene
A new genetic test allows parents to peer into their unborn children's medical future.
Friday, May 24, 2013
Hundreds of Alterations and Potential Drug Targets to Starve Tumors Identified
A massive study analyzing gene expression data from 22 tumor types has identified multiple metabolic expression changes associated with cancer.
Monday, April 22, 2013
New Gene Associated with Almost Doubled Alzheimer’s Risk in African-Americans
ABCA7, a minor gene variant in whites, is major player in African-Americans.
Wednesday, April 10, 2013
Schizophrenia Gene Networks Found, and a Link to Autism
Although schizophrenia is highly genetic in origin, the genes involved in the disorder have been difficult to identify.
Thursday, November 15, 2012
New de novo Genetic Mutations in Schizophrenia Identified
Columbia University Medical Center (CUMC) researchers have identified dozens of new spontaneous genetic mutations that play a significant role in the development of schizophrenia, adding to the growing list of genetic variants that can contribute to the disease.
Thursday, October 04, 2012
New de novo Genetic Mutations in Schizophrenia Identified
Columbia University Medical Center (CUMC) researchers have identified dozens of new spontaneous genetic mutations that play a significant role in the development of schizophrenia, adding to the growing list of genetic variants that can contribute to the disease.
Thursday, October 04, 2012
Scientific News
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
Autism and Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
How Scientists Use DNA to Track Disease Outbreaks
They’re the top questions on everyone’s mind when a new disease outbreak happens: where did the virus come from? When did this happen? How long has it been spreading in a particular country or group of people?
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Stem Cells Know How to Unwind
Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Five New Breast Cancer Genes Found
Discovery of mutations paves the way for personalised treatment of breast cancer.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!