Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Proteome Sciences to Develop Cancer Pathway Profiling Assays

Published: Monday, June 17, 2013
Last Updated: Monday, June 17, 2013
Bookmark and Share
New MS3 TMT® mass spectrometry technique to determine relative quantitation of proteins in multiple samples simultaneously.

Proteome Sciences has announced its largest contract to date, a technology agreement with Thermo Fisher Scientific, valued at $2.1million by Proteome Sciences, to develop advanced methods to profile changes in key cancer pathways.

Proteome Sciences will provide Thermo Fisher with access to its patents covering a three-stage mass spectrometry (MS3) fragmentation methodology to deliver significantly improved analysis and accuracy.

Proteome Sciences will receive cash and Thermo Fisher will provide a no-cost lease for mass spectrometry equipment for Proteome Sciences to develop the pathway assays.

In addition Proteome Sciences will continue to develop advanced 20 and 30-plex Tandem Mass Tags (TMT®) for Thermo Fisher for the next additions to the TMT® range of tags.

The new MS3 TMT® (three-stage MS Tandem Mass Tag) mass spectrometry technique is a breakthrough mass spectrometry based workflow, enabling mass spectrometers to determine relative quantitation of proteins in multiple samples simultaneously and with improved accuracy.

“We are at a critical juncture toward the development of personalized medicine which requires high-resolution maps of the protein networks regulating disease,” said Dr. Ian Pike, Chief Operating Officer at Proteome Sciences.

Dr. Pike continued, “The combination of the highest sample multiplexing rates from TMT with the industry-leading Thermo Scientific Orbitrap mass spectrometer enables us to provide an unrivalled platform to investigate subtle but significant changes in the proteome.”

Proteome Sciences will leverage the combined power of TMT® and Orbitrap® technology to develop an expanded range of mass spectrometry assays for the pharmaceutical industry.

Through its SysQuant® workflows, Proteome will profile the low-level changes in activity of key cancer signalling pathways to facilitate optimal drug selection across a range of solid tumours.

This will enable clinicians to provide real-time patient management and the ability, for the first time, to deliver truly personalized medicine.

“Life sciences researchers today need to perform high-quality relative quantitation of many samples quickly,” said Ian Jardine, Chief Technology Officer, Chromatography and Mass Spectrometry, Thermo Fisher Scientific.

Jardine continued, “MS3 TMT® technology greatly improves quantitative accuracy and throughput, while Orbitrap® technology dramatically increases depth and quality of data. This agreement offers customers a new paradigm in proteomics research.”

“Our agreement with Thermo Fisher sets a new benchmark to establish and apply novel diagnostic and prognostic strategies in healthcare management,” said Christopher Pearce, Chief Executive of Proteome Sciences. “It has long been our goal to provide clinicians the tools they need to provide early diagnosis of disease and better match molecular targeting medicines to the most likely responders. The output from this agreement should have a profound positive impact on the lives of large numbers of patients suffering from chronic diseases and, at the same time, provide considerable economic benefits to the health care system.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Breakthrough Profiling Technology to Improve Cancer Treatment on a Personalized Basis
New research paper published in the peer reviewed journal PLOS ONE.
Saturday, April 12, 2014
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
Mathematical Model Helps Show How Zebrafish Get Their Stripes
The iconic yellow and blue stripes of zebrafish form dynamically as young fish develop and grow. A mathematical model developed by Brown University researchers helps to show how pigment cells interact to form the pattern.
Epigenome Influenced by Habitat and Lifestyle
Study on Pygmy hunter-gatherer populations and Bantu farmers in Central Africa shows that habitat and lifestyle can impact the epigenome.
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos