Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Reading DNA, Backward and Forward

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
MIT biologists reveal how cells control the direction in which the genome is read.

MIT biologists have discovered a mechanism that allows cells to read their own DNA in the correct direction and prevents them from copying most of the so-called “junk DNA” that makes up long stretches of our genome.

Only about 15 percent of the human genome consists of protein-coding genes, but in recent years scientists have found that a surprising amount of the junk, or intergenic DNA, does get copied into RNA — the molecule that carries DNA’s messages to the rest of the cell.

Scientists have been trying to figure out just what this RNA might be doing, if anything. In 2008, MIT researchers led by Institute Professor Phillip Sharp discovered that much of this RNA is generated through a process called divergent expression, through which cells read their DNA in both directions moving away from a given starting point.

In a new paper appearing in Nature on June 23, Sharp and colleagues describe how cells initiate but then halt the copying of RNA in the upstream, or non-protein-coding direction, while allowing it to continue in the direction in which genes are correctly read. The finding helps to explain the existence of many recently discovered types of short strands of RNA whose function is unknown.

“This is part of an RNA revolution where we’re seeing different RNAs and new RNAs that we hadn’t suspected were present in cells, and trying to understand what role they have in the health of the cell or the viability of the cell,” says Sharp, who is a member of MIT’s Koch Institute for Integrative Cancer Research. “It gives us a whole new appreciation of the balance of the fundamental processes that allow cells to function.”

Graduate students Albert Almada and Xuebing Wu are the lead authors of the paper. Christopher Burge, a professor of biology and biological engineering, and undergraduate Andrea Kriz are also authors.

Choosing direction

DNA, which is housed within the nucleus of cells, controls cellular activity by coding for the production of RNAs and proteins. To exert this control, the genetic information encoded by DNA must first be copied, or transcribed, into messenger RNA (mRNA).

When the DNA double helix unwinds to reveal its genetic messages, RNA transcription can proceed in either direction. To initiate this copying, an enzyme called RNA polymerase latches on to the DNA at a spot known as the promoter. The RNA polymerase then moves along the strand, building the mRNA chain as it goes.

When the RNA polymerase reaches a stop signal at the end of a gene, it halts transcription and adds to the mRNA a sequence of bases known as a poly-A tail, which consists of a long string of the genetic base adenine. This process, known as polyadenylation, helps to prepare the mRNA molecule to be exported from the cell’s nucleus.

By sequencing the mRNA transcripts of mouse embryonic stem cells, the researchers discovered that polyadenylation also plays a major role in halting the transcription of upstream, noncoding DNA sequences. They found that these regions have a high density of signal sequences for polyadenylation, which prompts enzymes to chop up the RNA before it gets very long. Stretches of DNA that code for genes have a low density of these signal sequences.

The researchers also found another factor that influences whether transcription is allowed to continue. It has been recently shown that when a cellular factor known as U1 snRNP binds to RNA, polyadenylation is suppressed. The new MIT study found that genes have a higher concentration of binding sites for U1 snRNP than noncoding sequences, allowing gene transcription to continue uninterrupted.

The work demonstrates the important role of U1 snRNP in protecting mRNA as it is transcribed from genes and in preventing the cell from unnecessary copying of non-protein-coding DNA, says Gideon Dreyfuss, a professor of biochemistry and biophysics at the University of Pennsylvania School of Medicine.

“They’ve identified a very likely mechanism for early termination of these upstream RNAs by depriving them of U1 snRNP suppression of polyadenylation and cleavage,” says Dreyfuss, who was not part of the research team.

A widespread phenomenon

The function of all of this upstream noncoding RNA is still a subject of much investigation. “That transcriptional process could produce an RNA that has some function, or it could be a product of the nature of the biochemical reaction. This will be debated for a long time,” Sharp says.

His lab is now exploring the relationship between this transcription process and the observation of large numbers of so-called long noncoding RNAs (lncRNAs). He plans to investigate the mechanisms that control the synthesis of such RNAs and try to determine their functions.

“Once you see some data like this, it raises many more questions to be investigated, which I’m hoping will lead us to deeper insights into how our cells carry out their normal functions and how they change in malignancy,” Sharp says.

The research was funded by the National Institutes of Health, the National Cancer Institute and the National Institute of General Medical Sciences.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Thursday, August 27, 2015
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Friday, August 21, 2015
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Researchers Develop Genetic Tools to Engineer Common Gut Bacterium
Researchers from the Massachusetts Institute of Technology have developed genetic parts that can be combined to program the commensal gut bacterium Bacteroides thetaiotaomicron.
Friday, July 10, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Brain Tumor Weakness Identified
Discovery could offer a new target for treatment of glioblastoma.
Thursday, April 09, 2015
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos