Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Reading DNA, Backward and Forward

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
MIT biologists reveal how cells control the direction in which the genome is read.

MIT biologists have discovered a mechanism that allows cells to read their own DNA in the correct direction and prevents them from copying most of the so-called “junk DNA” that makes up long stretches of our genome.

Only about 15 percent of the human genome consists of protein-coding genes, but in recent years scientists have found that a surprising amount of the junk, or intergenic DNA, does get copied into RNA — the molecule that carries DNA’s messages to the rest of the cell.

Scientists have been trying to figure out just what this RNA might be doing, if anything. In 2008, MIT researchers led by Institute Professor Phillip Sharp discovered that much of this RNA is generated through a process called divergent expression, through which cells read their DNA in both directions moving away from a given starting point.

In a new paper appearing in Nature on June 23, Sharp and colleagues describe how cells initiate but then halt the copying of RNA in the upstream, or non-protein-coding direction, while allowing it to continue in the direction in which genes are correctly read. The finding helps to explain the existence of many recently discovered types of short strands of RNA whose function is unknown.

“This is part of an RNA revolution where we’re seeing different RNAs and new RNAs that we hadn’t suspected were present in cells, and trying to understand what role they have in the health of the cell or the viability of the cell,” says Sharp, who is a member of MIT’s Koch Institute for Integrative Cancer Research. “It gives us a whole new appreciation of the balance of the fundamental processes that allow cells to function.”

Graduate students Albert Almada and Xuebing Wu are the lead authors of the paper. Christopher Burge, a professor of biology and biological engineering, and undergraduate Andrea Kriz are also authors.

Choosing direction

DNA, which is housed within the nucleus of cells, controls cellular activity by coding for the production of RNAs and proteins. To exert this control, the genetic information encoded by DNA must first be copied, or transcribed, into messenger RNA (mRNA).

When the DNA double helix unwinds to reveal its genetic messages, RNA transcription can proceed in either direction. To initiate this copying, an enzyme called RNA polymerase latches on to the DNA at a spot known as the promoter. The RNA polymerase then moves along the strand, building the mRNA chain as it goes.

When the RNA polymerase reaches a stop signal at the end of a gene, it halts transcription and adds to the mRNA a sequence of bases known as a poly-A tail, which consists of a long string of the genetic base adenine. This process, known as polyadenylation, helps to prepare the mRNA molecule to be exported from the cell’s nucleus.

By sequencing the mRNA transcripts of mouse embryonic stem cells, the researchers discovered that polyadenylation also plays a major role in halting the transcription of upstream, noncoding DNA sequences. They found that these regions have a high density of signal sequences for polyadenylation, which prompts enzymes to chop up the RNA before it gets very long. Stretches of DNA that code for genes have a low density of these signal sequences.

The researchers also found another factor that influences whether transcription is allowed to continue. It has been recently shown that when a cellular factor known as U1 snRNP binds to RNA, polyadenylation is suppressed. The new MIT study found that genes have a higher concentration of binding sites for U1 snRNP than noncoding sequences, allowing gene transcription to continue uninterrupted.

The work demonstrates the important role of U1 snRNP in protecting mRNA as it is transcribed from genes and in preventing the cell from unnecessary copying of non-protein-coding DNA, says Gideon Dreyfuss, a professor of biochemistry and biophysics at the University of Pennsylvania School of Medicine.

“They’ve identified a very likely mechanism for early termination of these upstream RNAs by depriving them of U1 snRNP suppression of polyadenylation and cleavage,” says Dreyfuss, who was not part of the research team.

A widespread phenomenon

The function of all of this upstream noncoding RNA is still a subject of much investigation. “That transcriptional process could produce an RNA that has some function, or it could be a product of the nature of the biochemical reaction. This will be debated for a long time,” Sharp says.

His lab is now exploring the relationship between this transcription process and the observation of large numbers of so-called long noncoding RNAs (lncRNAs). He plans to investigate the mechanisms that control the synthesis of such RNAs and try to determine their functions.

“Once you see some data like this, it raises many more questions to be investigated, which I’m hoping will lead us to deeper insights into how our cells carry out their normal functions and how they change in malignancy,” Sharp says.

The research was funded by the National Institutes of Health, the National Cancer Institute and the National Institute of General Medical Sciences.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Wednesday, January 13, 2016
How Cancer Cells Spread
Study offers new targets for drugs that may prevent cancer from spreading.
Thursday, December 17, 2015
Scaling Up Synthetic-Biology Innovation
MIT professor’s startup makes synthesizing genes many times more cost effective.
Monday, December 14, 2015
Delivering microRNAs for Cancer Treatment
Scientists exploit gene therapy to shrink tumors in mice with an aggressive form of breast cancer.
Wednesday, December 09, 2015
CRISPR-Cas9 Genome Editing Hurdle Overcome
Team re-engineers system to dramatically cut down on editing errors; improvements advance future human applications.
Thursday, December 03, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Scientific News
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Alzheimer's Genetics Point To New Research Direction
A University of Adelaide analysis of genetic mutations which cause early-onset Alzheimer’s disease suggests a new focus for research into the causes of the disease.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!