Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bacterial DNA May Integrate Into Human Genome More Readily in Tumor Tissue

Published: Thursday, June 27, 2013
Last Updated: Thursday, June 27, 2013
Bookmark and Share
Gene transfer may play role in cancer, other diseases linked with DNA damage.

Bacterial DNA may integrate into the human genome more readily in tumors than in normal human tissue, scientists have found.

The researchers, affiliated with the University of Maryland School of Medicine's Institute for Genome Sciences, analyzed genomic sequencing data available from the Human Genome Project, the 1,000 Genomes Project and The Cancer Genome Atlas.

They considered the phenomenon of lateral gene transfer (LGT), the transmission of genetic material between organisms in a manner other than than traditional reproduction.

Scientists have already shown that bacteria can transfer DNA to the genome of an animal.

The researchers found evidence that lateral gene transfer is possible from bacteria to the cells of the human body, known as human somatic cells.

They found that bacterial DNA was more likely to integrate in the genome in tumor samples than in normal, healthy somatic cells. The phenomenon might play a role in cancer and other diseases associated with DNA damage.

"Advances in genomic and computational sciences are revealing the vast ways in which humans interact with an ever-present and endlessly diverse planet of microbes," says Matt Kane, program director in the National Science Foundation's Division of Environmental Biology in its Directorate for Biological Sciences, which funded the research.

"This discovery underscores the benefits that can result from a shift in our understanding of how this vast diversity of microbes and their genes may affect our health."

The results may lead to advances in personalized medicine, scientists say, in which doctors use each patient's genomic make-up to determine care and preventive measures.

A paper reporting the results is published today in the journal PLOS Computational Biology.

"LGT from bacteria to animals was only described recently, and it is exciting to find that such transfers can be found in the genome of human somatic cells and particularly in cancer genomes," says Julie Dunning Hotopp of the University of Maryland School of Medicine and lead author of the paper.

Hotopp also is a research scientist at the University of Maryland Marlene and Stewart Greenebaum Cancer Center.

"Studies applying this approach to additional cancer genome projects could be fruitful, leading us to a better understanding of the mechanisms of cancer."

The researchers found that while only 63.5 percent of TCGA samples analyzed were from tumors, the tumor samples contained 99.9 percent of reads supporting bacterial integration.

The data present a compelling case that LGT occurs in the human somatic genome, and that it could have an important role in cancer and other human diseases associated with mutations.

It's possible that LGT mutations play a role in carcinogenesis, the scientists say, yet it's also possible that they could simply be "passenger mutations."

The investigators suggest several competing ideas to explain the results, though more research is needed for definitive answers.

One possibility is that the mutations are part of carcinogenesis, the process by which normal cells turn into cancer cells.

Alternatively, tumor cells are very rapidly proliferating, so much so that they may be more permissive to lateral gene transfer.

It's also possible that bacteria are causing these mutations because they benefit the bacteria themselves.

The study was also funded by the National Institutes of Health.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Blueprint for the Affordable Genome
Stampede supercomputer powers innovations in DNA sequencing technologies.
Friday, June 27, 2014
Identifying the Pathway that Leads to Cells Forming into an Individual Body
By studying how genes influence cells to migrate and mutate, scientist hopes findings will lead to improved cancer treatments.
Wednesday, December 11, 2013
Understanding how our Genes Help us Develop
Humans and fruit flies have similar Hox genes, which are master regulators of embryonic development.
Monday, September 16, 2013
Genomic and Computational Tools Provide Window to Distant Past
Researcher studies gene differences in humans and other species to better understand timeline of genetic changes.
Friday, August 09, 2013
NSF Awards $14M to Advance Plant Genomic Research
Resources to be developed include genomic sequences, genetic markers, maps and expressed sequence collections.
Thursday, January 11, 2007
NSF Awards $145,924 Grant to Williams College
The project will establish a laboratory at Williams for the collection of DNA sequence and genotype data.
Monday, November 21, 2005
Scientific News
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
New Blood Test for The Earlier Diagnosis of Breast Cancer Spread
Researchers at University of Westminster have confirmed that a new blood test can detect if breast cancer has spread to other parts of the body.
GI Problems in Autism May Originate in Genes
Gene linked to autism lowers serotonin activity in mice, slows movement in gut.
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
First Gene Therapy Successful Against Human Aging
American woman gets biologically younger after gene therapies.
Genetic Variants for Happiness Discovered
VU Amsterdam scientists have found a genetic overlap between happiness and depression.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!