Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Stem Cell Gene Therapy for Sickle Cell Disease Advances Toward Clinical Trials

Published: Tuesday, July 02, 2013
Last Updated: Tuesday, July 02, 2013
Bookmark and Share
Gene therapy technique is scheduled to begin clinical trials by early 2014.

Researchers at UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have successfully established the foundation for using hematopoietic (blood-producing) stem cells from the bone marrow of patients with sickle cell disease to treat the disease.

The study was led by Dr. Donald Kohn, professor of pediatrics and of microbiology, immunology and molecular genetics.

Sickle cell disease causes the body to produce red blood cells that are formed like the crescent-shaped blade of a sickle, which hinders blood flow in the blood vessels and deprives the body's organs of oxygen.

Kohn has introduced an anti-sickling gene into the hematopoietic stem cells to capitalize on the self-renewing potential of stem cells and create a continual source of healthy red blood cells that do not sickle.

The study was published online ahead of press in the Journal of Clinical Investigation.

Kohn's gene therapy approach, which uses hematopoietic stem cells from a patient's own blood, is a revolutionary alternative to current sickle cell disease treatments as it creates a self-renewing normal blood cell by inserting a gene that has anti-sickling properties into hematopoietic stem cells.

This approach also does not rely on the identification of a matched donor, thus avoiding the risk of rejection of donor cells. The anti-sickling hematopoietic stem cells are transplanted back into the patient's bone marrow and multiply the corrected cells that make red blood cells without sickling.

"The results demonstrate that our technique of lentiviral transduction is capable of efficient transfer and consistent expression of an effective anti-sickling beta-globin gene in human sickle cell disease bone marrow progenitor cells, which improved the physiologic parameters of the resulting red blood cells," Kohn said.

Kohn and colleagues found that in the laboratory the hematopoietic stem cells produced new non-sickled blood cells at a rate sufficient for significant clinical improvement for patients. The new blood cells survive longer than sickled cells, which could also improve treatment outcomes.

Sickle cell disease mostly affects people of Sub-Saharan African descent, and more than 90,000 patients in the U.S. have been diagnosed. It is caused by an inherited mutation in the beta-globin gene that makes red blood cells change from their normal shape, which is round and pliable, into a rigid, sickle-shaped cell.

Normal red blood cells are able to pass easily through the tiniest blood vessels, called capillaries, carrying oxygen to organs such as the lungs, liver and kidneys. But due to their rigid structure, sickled blood cells get stuck in the capillaries.

Current treatments include transplanting patients with donor hematopoietic stem cells, which is a potential cure for sickle cell disease, but due to the serious risks of rejection, only a small number of patients have undergone this procedure and it is usually restricted to children with severe symptoms.

This study was supported in part by a Disease Team I Award from the California Institute for Regenerative Medicine, the state's stem cell research agency, which was created by a voter initiative in 2004.

The purpose of the disease team program is to support research focused on one particular disease that leads to the filing of an investigational new drug application with the FDA within four years.

The program is designed to speed translational research - research that takes scientific discoveries from the laboratory to the patient bedside.

This requires new levels of collaboration between basic laboratory scientists, medical clinicians, biotechnology experts and pharmacology experts, to name a few.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Epigenetic Clock Predicts Life Expectancy
New research finds 5 percent of population ages faster, faces shorter lifespan.
Thursday, September 29, 2016
Study Sheds New Light on Autism Genetics
Scientists find new autism-linked gene, and discover that autistic siblings don’t always have the same disease-related mutations.
Monday, September 05, 2016
Researchers Identify Protein That Could Prevent Tumor Growth
Researchers at UCLA have identified a protein that has the potential to prevent the growth of cervical cancer cells. The discovery could lead to the development of new treatments for the deadly disease.
Friday, June 03, 2016
Study Finds Link Between Neural Stem Cell Overgrowth and Autism-like Behavior in Mice
UCLA researchers demonstrates how, in pregnant mice, inflammation can trigger an excessive division of neural stem cells.
Tuesday, October 14, 2014
UCLA Awarded $7 Million to Unravel Mystery Genetic Diseases
UCLA tackle difficult-to-solve medical cases and develop ways to diagnose rare genetic disorders.
Friday, July 04, 2014
Scientists Identify Link Between Stem Cell Regulation and the Development of Lung Cancer
Study explains how factors that regulate the growth of adult stem cells lead to the formation of precancerous lesions.
Tuesday, June 24, 2014
Cells Derived from Pluripotent Stem Cells may Pose Challenges for Clinical Use
UCLA researchers have found that three types of cells derived from hES cells and from iPS cells are similar to each other.
Tuesday, August 23, 2011
Scientists Reprogram Induced Pluripotent Cells into Precursors of Eggs, Sperm
The findings from UCLA researchers can possibly open the door for new treatments for infertility using patient-specific cells.
Wednesday, February 04, 2009
Scientists at UCLA Reprogram Human Skin Cells into Embryonic Stem Cells
UCLA stem cell scientists have reprogrammed human skin cells into cells with the same unlimited properties as embryonic stem cells, without using embryos or eggs.
Tuesday, February 12, 2008
Scientific News
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Genes Help Track Odd Migrations of Zika Mosquitoes
Study shows that mosquitoes carrying Zika virus or Dengue fever a genetically distinct around the world.
Editing Gene Mutations in Anemia
Researchers successfully use a new gene editing strategy to correct mutations that cause a form of anemia.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
Rare Immunodeficiency Yields Unexpected Insights
Scientists uncover previously unknown gene mutation revealing the role of a key molecule involved in immune cell development.
Driving Mosquito Evolution to Fight Malaria
Researchers propose insect repellent in conjunction with insecticides to extend current insecticide lifetime.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
ALS Study Reveals Role of RNA-Binding Proteins
The findings are a significant step forward in validating RNA-based therapy as a treatment for ALS.
Observing Direct Inheritance of Gene-Silencing RNA
Research has allowed for the observation of double-stranded RNA molecule being passed from parent to offspring in roundworms.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos