Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genome Institute of Singapore Scientists Discover Molecular Communication Network in Human Stem Cells

Published: Tuesday, July 02, 2013
Last Updated: Tuesday, July 02, 2013
Bookmark and Share
Scientists have discovered a molecular network in human embryonic stem cells that integrates cell communication signals to keep the cell in its stem cell state.

Human embryonic stem cells have the remarkable property that they can form all human cell types. Scientists around the world study these cells to be able to use them for medical applications in the future. Many factors are required for stem cells to keep their special state, amongst others the use of cell communication pathways.

Cell communication is of key importance in multicellular organisms. For example, the coordinated development of tissues in the embryo to become any specific organ requires that cells receive signals and respond accordingly. If there are errors in the signals, the cell will respond differently, possibly leading to diseases such as cancer. The communication signals which are used in hESCs activate a chain of reactions (called the extracellular regulated kinase (ERK) pathway) within each cell, causing the cell to respond by activating genetic information.

Scientists at the GIS and MPIMG studied which genetic information is activated in the cell, and thereby discovered a network for molecular communication in hESCs. They mapped the kinase interactions across the entire genome, and discovered that ERK2, a protein that belongs to the ERK signaling family, targets important sites such as non-coding genes and histones, cell cycle, metabolism and also stem cell-specific genes.

The ERK signaling pathway involves an additional protein, ELK1 which interacts with ERK2 to activate the genetic information. Interestingly, the team also discovered that ELK1 has a second, totally opposite function. At genomic sites which are not targeted by ERK signaling, ELK1 silences genetic information, thereby keeping the cell in its undifferentiated state. The authors propose a model that integrates this bi-directional control to keep the cell in the stem cell state.

These findings are particularly relevant for stem cell research, but they might also help research in other related fields.

First author Dr Jonathan Goke from Stem Cell and Developmental Biology at the GIS said, "The ERK signaling pathway has been known for many years, but this is the first time we are able to see the full spectrum of the response in the genome of stem cells. We have found many biological processes that are associated with this signaling pathway, but we also found new and unexpected patterns such as this dual mode of ELK1. It will be interesting to see how this communication network changes in other cells, tissues, or in disease."

"A remarkable feature of this study is, how the information was extracted by computational means from the experimental data," said Prof Martin Vingron from MPIMG and co-author of this study.

Prof Ng Huck Hui added, "This is an important study because it describes the cell's signaling networks and its integration into the general regulatory network. Understanding the biology of embryonic stem cells is a first step to understanding the capabilities and caveats of stem cells in future medical applications."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Unexpected Synergy Between Two Cancer-Linked Proteins Offers Hope for Personalised Cancer Therapy
A team of scientists have discovered a new biomarker which will help physicians predict how well cancer patients respond to cancer drugs.
Thursday, August 08, 2013
Singapore Scientists Discover New Drug Targets for Aggressive Breast Cancer
Study has identified genes that are potential targets for therapeutic drugs against aggressive breast cancer.
Monday, July 29, 2013
Singapore Scientist Wins Coveted Chen New Investigator Award 2013
Dr Patrick Tan is lauded for his significant contributions to the research on genomic profiles of Asian cancers.
Tuesday, April 23, 2013
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!