Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers at UT Southwestern Identify Novel Class of Drugs for Prostate Cancers

Published: Friday, July 05, 2013
Last Updated: Friday, July 05, 2013
Bookmark and Share
Researchers found that they could disrupt androgen receptor signaling using peptidomimetics.

A new study on prostate cancer describes a novel class of drugs developed by UT Southwestern Medical Center researchers that interrupts critical signaling needed for prostate cancer cells to grow.

In men with advanced prostate cancer, growth of cancer cells depends on androgen receptor signaling, which is driven by androgens, such as testosterone.

To thwart tumor growth, most patients with advanced prostate cancer receive drugs that block the production of androgen or block the receptor where the androgen binds.

Unfortunately, such treatments invariably fail and patients die of prostate cancer with their androgen receptor signaling still active and still promoting tumor growth.

In the new study, available online at Nature Communications, a team of researchers led by Dr. Ganesh Raj, associate professor of urology at UT Southwestern, found that they could disrupt androgen receptor signaling using a novel class of drugs called peptidomimetics.

This therapeutic agent consists of an engineered small protein-like chain designed to mimic peptides that are critical for androgen receptor function.

The peptidomimetic agents block the activity of the androgen receptor even in the presence of androgen by attacking the protein in a different spot from where the androgen binds.

“We are hopeful that this novel class of drugs will shut down androgen receptor signaling and lead to added options and increased longevity for men with advanced prostate cancer,” said Dr. Raj, the senior author of the study.

Dr. Raj compared the action that takes place to a lock and key mechanism. In prostate cancer, the androgen receptor (lock) is activated by the androgen (key) resulting in a signal that causes prostate cancer proliferation.

In advanced prostate cancer, despite drugs targeting either the lock (androgen receptor) or the key (androgen production), there can be aberrant keys that open the lock or mutated locks that are always open, resulting in cancer cell proliferation.

Instead of trying to block the lock or the key, peptidomimetics uncouple the lock and key mechanism from the proliferation signal. Thus, even with the androgen receptor activated, the prostate cancer cells do not receive the signal to proliferate and do not grow.

The researchers tested their drug in mouse and human tissue models. The novel drug proved non-toxic and prevented androgen receptor signaling in cancer cells.

The response is highly promising and suggests that peptidomimetic targeting of prostate cancer may be a viable therapeutic approach for men with advanced disease.

Further testing is needed before a drug could move to Phase 1 clinical trials that involve human participants.

“Most drugs now available to treat advanced prostate cancer improve survival rates by three or four months,” Dr. Raj said. “Our new agents may offer hope for men who fail with the current drugs.”

These findings represent the development of a first-in-class agent targeting critical interactions between proteins. Other cellular and disease processes eventually could also be targeted with peptidomimetics, the scientists said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
Mutations in Two Genes Linked to Familial Pulmonary Fibrosis and Telomere Shortening
PARN and RTEL1 genes strengthen the link between lung fibrosis and telomere dysfunction.
Tuesday, May 05, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Targeting The Cell’s ‘Biological Clock’
Researchers target the cell’s ‘biological clock’ in promising new therapy to kill cancer cells, shrink tumor growth.
Monday, January 05, 2015
Whole-Genome Sequencing Successfully Identifies Cancer-Related Mutations
UT Southwestern Medical Center cancer researchers have demonstrated that whole-genome sequencing can be used to identify patients’ risk for hereditary cancer.
Wednesday, December 24, 2014
Therapeutic Strategy May Treat a Childhood Neurological Disorder
Researchers have identified a possible therapy to treat neurofibromatosis type 1 or NF1.
Wednesday, December 17, 2014
Signaling Mechanism Could Be Target For Survival, Growth Of Tumor Cells In Brain Cancer
Non-canonical EGFR signalling shown to make glioblastoma tumor cells more resistant to chemotherapy treatment.
Monday, December 15, 2014
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!