Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Singapore Scientists Discover New Drug Targets for Aggressive Breast Cancer

Published: Monday, July 29, 2013
Last Updated: Monday, July 29, 2013
Bookmark and Share
Study has identified genes that are potential targets for therapeutic drugs against aggressive breast cancer.

Out of the 1.5 million women diagnosed with breast cancer in the world annually, nearly one in seven of these is classified as triple negative. Patients with triple- negative breast cancer (TNBC) have tumours that are missing three important proteins that are found in other types of breast cancer. The absence of these three proteins make TNBC patients succumb to a higher rate of relapse following treatment and have lower overall survival rates. There is currently no effective therapy for TNBC.

Using integrated genomic approaches, GIS scientists led by Dr. Qiang Yu, in collaboration with local and international institutions, set out to search for targets that can be affected by drugs. The scientists discovered that a protein tyrosine phosphatase1, called UBASH3B, is overexpressed in one third of TNBC patients.

Lead author Dr Qiang Yu said, "The identification of target genes is always the most crucial first step towards treating a disease. It is heartening to know that UBASH3B is an important element of the pro-invasive gene network and targeting UBASH3B not only inhibits TNBC invasive growth, but also significantly reduces metastasis."

Tan Tock Seng Hospital consultant surgeon Dr Tan Ern Yu, a collaborator and co- author of the study said, "Some TNBC patients relapse soon after standard treatment while others remain free of disease for a long time. Being able to predict which patients are more likely to relapse is important since these patients may benefit from more aggressive treatments. But currently, doctors are unable to reliably do so. Further validation will show whether UBASH3B can be developed into a means of identifying these high-risk patients as well as a new form of treatment."

Dr Dave Hoon, Director, Department Molecular Oncology at the John Wayne Cancer Institute, USA, and co-author said, "Recent large-scale genomic analysis of breast cancer show that triple negative breast cancer are highly heterogeneous and patients tumors can have different molecular profiles. Unlike more common breast cancers that often express oestrogen, progesterone or HER2 can be targeted by specific agents such as hormone therapy or Herceptin. TNBC is the most difficult breast cancer to treat. The finding can help us develop new approaches for targeted therapy for this highly aggressive breast cancer."

UBASH3B is expressed in high levels not only in American TNBC patients, but also in local Asian patients. This important information shows that the clinical significance of this finding is not limited to one specific ethnic group.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Unexpected Synergy Between Two Cancer-Linked Proteins Offers Hope for Personalised Cancer Therapy
A team of scientists have discovered a new biomarker which will help physicians predict how well cancer patients respond to cancer drugs.
Thursday, August 08, 2013
Genome Institute of Singapore Scientists Discover Molecular Communication Network in Human Stem Cells
Scientists have discovered a molecular network in human embryonic stem cells that integrates cell communication signals to keep the cell in its stem cell state.
Tuesday, July 02, 2013
Singapore Scientist Wins Coveted Chen New Investigator Award 2013
Dr Patrick Tan is lauded for his significant contributions to the research on genomic profiles of Asian cancers.
Tuesday, April 23, 2013
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!