Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Surprising Mechanism Discovered in Polycystic Kidney Disease

Published: Monday, July 29, 2013
Last Updated: Monday, July 29, 2013
Bookmark and Share
A study has uncovered a new and unexpected molecular mechanism in the development of polycystic kidney disease, or PKD.

PKD is a life-threatening genetic disorder that causes multiple cysts to form on the kidneys — enlarging them, cutting off proper urine flow, and causing kidney failure in half of affected people by age 60. It affects more than 12 million people worldwide.

Cilia are the hair-like structures on the surface of many human cells that can either move things along – dirt out of the lungs, or an egg from the ovary to the uterus – or sense the environment, such as vision in the retina or smell in the nose. Recent research has implicated defects in the sensory cilia — often caused by genetic mutations — in many human diseases, including cancer, cardiac disease, blindness, and kidney disease. In the kidney, disruption of sensory cilia cause kidney cysts.

The polycystin-1 and -2 (also known as PC1 and PC2) proteins are key players in the normal functioning of the kidneys. Earlier research has shown that when they are lost or mutated, cysts grow in the kidneys and cause almost all cases of PKD in humans.

Working in mice, the Yale team found that cysts grew when the cilia were intact but lacked polycystin — but, surprisingly, cysts stopped growing despite the absence of polycystins when the cilia were disrupted or eliminated.

The activity of this pathway, and the timing of the loss of polycystin proteins and the cilia, determined the severity of both early- and adult-onset PKD, the researchers found.

“None of the other pathways discovered so far have proven as universal as the cilia dependent pathway in explaining polycystic kidney disease,” said corresponding author Dr. Stefan Somlo, professor of internal medicine (nephrology) and genetics at Yale School of Medicine. “We found to our surprise that elimination of cilia suppresses cyst growth in all of the genetic models of human PKD.”

Somlo believes that his team’s research could lead to discovery of new targets for therapies to inhibit this cilia-dependent pathway of PKD, and slow cyst growth.

Other authors are Ming Ma and Xin Tian of Yale, Peter Igarashi of the University of Texas Southwestern School of Medicine, and Gregory Pazour of the University of Massachusetts Medical School.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Gene that Causes Obesity-Related Metabolic Syndrome Identified
Yale-led research has identified a genetic mutation responsible for the cluster of cardiovascular risk factors that comprise the obesity-related “metabolic syndrome.”
Friday, May 16, 2014
Tsetse Fly Genome Sequenced
Research opens the door to scientific breakthroughs that could reduce or end African sleeping sickness in sub-Saharan Africa.
Friday, April 25, 2014
Deleting Single Gene Reduces Fat in Mice
By deleting a single gene, researchers at Yale University were able to dramatically reduce fat mass in mice while expanding their lifespan by 20%.
Tuesday, March 25, 2014
Genetic Mutation Causes Lupus in Mice
Discovery could open the way for development of therapies that target the mutation.
Tuesday, January 07, 2014
Yale’s Lifton Receives $3 Million Science Prize
Richard Lifton has received a $3 million Breakthrough Prize in Life Sciences, created by top Silicon Valley entrepreneurs.
Monday, December 16, 2013
Follow the Genes: Yale Team Finds Clues to Origin of Autism
A team of researchers has pinpointed which cell types and regions of the developing human brain are affected by gene mutations linked to autism.
Wednesday, November 27, 2013
Yale and Harvard Researchers Rewrite an Entire Genome
Scientists recoded the entire genome of an organism and improved a bacterium’s ability to resist viruses.
Friday, October 18, 2013
Awakening Genes that Suppress Tumors
When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably.
Tuesday, October 15, 2013
New Study Changes View about the Genetics of Leukemia Risk
A gene that helps keep blood free of cancer is controlled by tiny pieces of RNA, a finding that may lead to better ways to diagnose blood cancers.
Tuesday, October 15, 2013
Scientific News
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
New Blood Test for The Earlier Diagnosis of Breast Cancer Spread
Researchers at University of Westminster have confirmed that a new blood test can detect if breast cancer has spread to other parts of the body.
GI Problems in Autism May Originate in Genes
Gene linked to autism lowers serotonin activity in mice, slows movement in gut.
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
First Gene Therapy Successful Against Human Aging
American woman gets biologically younger after gene therapies.
Genetic Variants for Happiness Discovered
VU Amsterdam scientists have found a genetic overlap between happiness and depression.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!