Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Reach the Holy Grail in Label-Free Cancer Marker Detection: Single Molecules

Published: Monday, July 29, 2013
Last Updated: Monday, July 29, 2013
Bookmark and Share
Just months after setting a record for detecting the smallest single virus in solution, researchers have announced a new breakthrough.

 They used a nano-enhanced version of their patented microcavity biosensor to detect a single cancer marker protein, which is one-sixth the size of the smallest virus, and even smaller molecules below the mass of all known markers.

This achievement shatters the previous record, setting a new benchmark for the most sensitive limit of detection, and may significantly advance early disease diagnostics.  Unlike current technology, which attaches a fluorescent molecule, or label, to the antigen to allow it to be seen, the new process detects the antigen without an interfering label.

Stephen Arnold, university professor of applied physics and member of the Othmer-Jacobs Department of Chemical and Biomolecular Engineering, published details of the achievement in Nano Letters, a publication of the American Chemical Society.

In 2012, Arnold and his team were able to detect in solution the smallest known RNA virus, MS2, with a mass of 6 attograms. Now, with experimental work by postdoctoral fellow Venkata Dantham and former student David Keng, two proteins have been detected: a human cancer marker protein called Thyroglobulin, with a mass of just 1 attogram, and the bovine form of a common plasma protein, serum albumin, with a far smaller mass of 0.11 attogram. “An attogram is a millionth of a millionth of a millionth of a gram,” said Arnold, “and we believe that our new limit of detection may be smaller than 0.01 attogram.”

This latest milestone builds on a technique pioneered by Arnold and collaborators from NYU-Poly and Fordham University.  In 2012, the researchers set the first sizing record by treating a novel biosensor with plasmonic gold nano-receptors, enhancing the electric field of the sensor and allowing even the smallest shifts in resonant frequency to be detected. Their plan was to design a medical diagnostic device capable of identifying a single virus particle in a point-of-care setting, without the use of special assay preparations.

At the time, the notion of detecting a single protein—phenomenally smaller than a virus—was set forth as the ultimate goal.

“Proteins run the body,” explained Arnold. “When the immune system encounters virus, it pumps out huge quantities of antibody proteins, and all cancers generate protein markers. A test capable of detecting a single protein would be the most sensitive diagnostic test imaginable.”

To the surprise of the researchers, examination of their nanoreceptor under a transmission electron microscope revealed that its gold shell surface was covered with random bumps roughly the size of a protein. Computer mapping and simulations created by Stephen Holler, once Arnold’s student and now assistant professor of physics at Fordham University, showed that these irregularities generate their own highly reactive local sensitivity field extending out several nanometers, amplifying the capabilities of the sensor far beyond original predictions. “A virus is far too large to be aided in detection by this field,” Arnold said. “Proteins are just a few nanometers across—exactly the right size to register in this space.”

The implications of single protein detection are significant and may lay the foundation for improved medical therapeutics.  Among other advances, Arnold and his colleagues posit that the ability to follow a signal in real time—to actually witness the detection of a single disease marker protein and track its movement—may yield new understanding of how proteins attach to antibodies.

Arnold named the novel method of label-free detection “whispering gallery-mode biosensing” because light waves in the system reminded him of the way that voices bounce around the whispering gallery under the dome of St. Paul’s Cathedral in London. A laser sends light through a glass fiber to a detector. When a microsphere is placed against the fiber, certain wavelengths of light detour into the sphere and bounce around inside, creating a dip in the light that the detector receives. When a molecule like a cancer marker clings to a gold nanoshell attached to the microsphere, the microsphere’s resonant frequency shifts by a measureable amount.

The research has been supported by a grant from the National Science Foundation (NSF). This summer, Arnold will begin the next stage of expanding the capacity for these biosensors. The NSF has awarded a new $200,000 grant to him in collaboration with University of Michigan professor Xudong Fan. The grant will support the construction of a multiplexed array of plasmonically enhanced resonators, which should allow a variety of protein to be identified in blood serum within minutes.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Removing 62 Barriers to Pig–to–Human Organ Transplant in One Fell Swoop
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
UC San Diego Team Up with Illumina to Speed-Read Your Microbiome
Data analysis app accelerates studies aimed at using microbes to predict, diagnose and treat human diseases.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos