Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New 3-D Colonoscopy Eases Detection of Precancerous Lesions

Published: Thursday, August 01, 2013
Last Updated: Thursday, August 01, 2013
Bookmark and Share
New technology offers three-dimensional images, making it easier to detect precancerous lesions.

MIT researchers have developed a new endoscopy technology that could make it easier for doctors to detect precancerous lesions in the colon. Early detection of such lesions has been shown to reduce death rates from colorectal cancer, which kills about 50,000 people per year in the United States.

The new technique, known as photometric stereo endoscopy, can capture topographical images of the colon surface along with traditional two-dimensional images. Such images make it easier to see precancerous growths, including flatter lesions that traditional endoscopy usually misses, says Nicholas Durr, a research fellow in the Madrid-MIT M+Vision Consortium, a recently formed community of medical researchers in Boston and Madrid.

“In conventional colonoscopy screening, you look for these characteristic large polyps that grow into the lumen of the colon, which are relatively easy to see,” Durr says. “However, a lot of studies in the last few years have shown that more subtle, nonpolypoid lesions can also cause cancer.”

Durr is the senior author of a paper describing the new technology in the Journal of Biomedical Optics. Lead author of the paper is Vicente Parot, a research fellow in the M+Vision Consortium. Researchers from Massachusetts General Hospital (MGH) also participated in the project.

In the United States, colonoscopies are recommended beginning at age 50, and are credited with reducing the risk of death from colorectal cancer by about half. Traditional colonoscopy uses endoscopes with fiber-optic cameras to capture images.

Durr and his colleagues, seeking medical problems that could be solved with new optical technology, realized that there was a need to detect lesions that colonoscopy can miss. A technique called chromoendoscopy, in which a dye is sprayed in the colon to highlight topographical changes, offers better sensitivity but is not routinely used because it takes too long.

“Photometric stereo endoscopy can potentially provide similar contrast to chromoendoscopy,” Durr says. “And because it’s an all-optical technique, it can give the contrast at the push of a button.”

Originally developed as a computer vision technique, photometric stereo imaging can reproduce the topography of a surface by measuring the distances between multiple light sources and the surface. Those distances are used to calculate the slope of the surface relative to the light source, generating a representation of any bumps or other surface features.

However, the researchers had to modify the original technology for endoscopy because there is no way to know the precise distance between the tip of the endoscope and the surface of the colon. Because of this, the images generated during their first attempts contained distortions, particularly in locations where the surface height changes gradually.

To eliminate those distortions, the researchers developed a way to filter out spatial information from the smoothest surfaces. The resulting technology, which requires at least three light sources, does not calculate the exact height or depth of surface features but creates a visual representation that allows the colonoscopist to determine if there is a lesion or polyp.

“What is attractive about this technique for colonoscopy is that it provides an added dimension of diagnostic information, particularly about three-dimensional morphology on the surface of the colon,” says Nimmi Ramanujam, a professor of biological engineering at Duke University who was not part of the research team.

The researchers built two prototypes — one 35 millimeters in diameter, which would be too large to use for colonoscopy, and one 14 millimeters in diameter, the size of a typical colonoscope. In tests with an artificial silicon colon, the researchers found that both prototypes could create 3-D representations of polyps and flatter lesions.

The new technology should be easily incorporated into newer endoscopes, Durr says. “A lot of existing colonoscopes already have multiple light sources,” he says. “From a hardware perspective all they need to do is alternate the lights and then update their software to process this photometric data.”

The researchers plan to test the technology in human patients in clinical trials at MGH and the Hospital Clinico San Carlos in Madrid. They are also working on additional computer algorithms that could help to automate the process of identifying polyps and lesions from the topographical information generated by the new system.

The research was funded by the Comunidad de Madrid through the Madrid-MIT M+Vision Consortium.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos