Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stray Prenatal Gene Network Suspected in Schizophrenia

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
May disrupt birth of new neurons in prefrontal cortex.

Researchers have reverse-engineered the outlines of a disrupted prenatal gene network in schizophrenia (http://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml), by tracing spontaneous mutations to where and when they likely cause damage in the brain.

Some people with the brain disorder may suffer from impaired birth of new neurons, or neurogenesis, in the front of their brain during prenatal development, suggests the study, which was funded by the National Institutes of Health.

"Processes critical for the brain's development can be revealed by the mutations that disrupt them," explained Mary-Claire King, Ph.D., University of Washington (UW), Seattle, a grantee of NIH's National Institute of Mental Health (NIMH).

King continued, "Mutations can lead to loss of integrity of a whole pathway, not just of a single gene. Our results implicate networked genes underlying a pathway responsible for orchestrating neurogenesis in the prefrontal cortex in schizophrenia."

King, and collaborators at UW and seven other research centers participating in the NIMH genetics repository, report on their discovery Aug. 1, 2013 in the journal Cell.

"By linking genomic findings to functional measures, this approach gives us additional insight into how early development differs in the brain of someone who will eventually manifest the symptoms of psychosis," said NIMH Director Thomas R. Insel, M.D.

Earlier studies (http://www.nimh.nih.gov/news/science-news/2008/spontaneous-mutations-rife-in-non-familial-schizophrenia.shtml) had linked spontaneous mutations to non-familial schizophrenia and traced them broadly to genes involved in brain development, but little was known about convergent effects on pathways.

King and colleagues set out to explore causes of schizophrenia by integrating genomic data with newly available online transcriptome (http://www.nimh.nih.gov/news/science-news/2009/atlas-will-reveal-when-and-where-genes-turn-on-in-the-brain.shtml) resources that show where in the brain and when in development genes turn on.

They compared spontaneous mutations in 105 people with schizophrenia with those in 84 unaffected siblings, in families without previous histories of the illness.

Unlike most other genes, expression levels of many of the 50 mutation-containing genes that form the suspected network were highest early in fetal development, tapered off by childhood, but conspicuously increased again in early adulthood - just when schizophrenia symptoms typically first develop.

This adds to evidence supporting the prevailing neurodevelopmental model (http://www.nimh.nih.gov/about/director/publications/rethinking-schizophrenia.shtml) of schizophrenia.

The implicated genes play important roles in migration of cells in the developing brain, communication between brain cells, regulation of gene expression, and related intracellular workings.

Having an older father increased the likelihood of spontaneous mutations for both affected and unaffected siblings. Yet affected siblings were modestly more likely to have mutations predicted to damage protein function.

Such damaging mutations were estimated to account for 21 percent of schizophrenia cases in the study sample. The mutations tend to be individually rare; only one gene harboring damaging mutations turned up in more than one of the cases, and several patients had damaging mutations in more than one gene.

The networks formed by genes harboring these damaging mutations were found to vary in connectivity, based on the extent to which their proteins are co-expressed and interact. The network formed by genes harboring damaging mutations in schizophrenia had significantly more nodes, or points of connection, than networks modeled from unaffected siblings.

By contrast, the network of genes harboring non-damaging mutations in affected siblings had no more nodes than similar networks in unaffected siblings.

When the researchers compared such network connectivity across different brain tissues and different periods of development, they discovered a notable difference between affected and unaffected siblings: Genes harboring damaging mutations that are expressed together in the fetal prefrontal cortex of people with schizophrenia formed a network with significantly greater connectivity than networks modeled from genes harboring similar mutations in their unaffected siblings at that time in development.

The study results are consistent with several lines of evidence implicating the prefrontal cortex in schizophrenia. The prefrontal cortex organizes information from other brain regions to coordinate executive functions like thinking, planning, attention span, working memory, problem-solving, and self-regulation.

The findings suggest that impairments in such functions - often beginning before the onset of symptoms in early adulthood, when the prefrontal cortex fully matures - appear to be early signs of the illness.

The study demonstrates how integrating genomic data and transcriptome analysis can help to pinpoint disease mechanisms and identify potential treatment targets.

For example, the mutant genes in the patients studied suggest the possible efficacy of medications targeting glutamate and calcium channel pathways, say the researchers.

"These results are striking, as they show that the genetic architecture of schizophrenia cannot be understood without an appreciation of how genes work in temporal and spatial networks during neurodevelopment," said Thomas Lehner, Ph.D., chief of the NIMH Genomics Research Branch.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Souped-up Remote Control Switches Behaviors On-and-Off in Mice
BRAIN Initiative yields chemical-genetic tool with push-pull capabilities.
Thursday, May 07, 2015
NIH-funded Study Points Way Forward for Retinal Disease Gene Therapy
Benefits for Leber congenital amaurosis peak after one to three years, then diminish.
Tuesday, May 05, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
Statement on NIH Funding of Research Using Gene-Editing Technologies in Human Embryos
Researchers modify the gene responsible for a potentially fatal blood disorder using CRISPR/Cas9 technology.
Saturday, May 02, 2015
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!