Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Advance in Regenerative Medicine Could Make Reprogrammed Cells Safer While Improving Their Function

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
Finding suggests the potential to repair a patients' organs using cells from ailing tissue.

The enormous promise of regenerative medicine is matched by equally enormous challenges. But a new finding by a team of researchers led by Weill Cornell Medical College has the potential to improve both the safety and performance of reprogrammed cells.

The researchers' study, published in today's issue of the journal Nature, found that an enzyme, activation-induced cytidine deaminase (AID), helps in the process that changes an adult human cell into an induced pluripotent stem cell (iPS cell). These iPS cells can then be developed into any kind of cell needed to therapeutically restore tissues and organs.

The finding settles an ongoing controversy regarding use of AID to reprogram cells, says the study's senior investigator, Dr. Todd Evans, vice chair for research and professor of cell and developmental biology in the Department of Surgery at Weill Cornell Medical College.

"The dispute was whether AID is required to make iPS cells, and we found that the enzyme does make reprogramming very efficient, although it is not absolutely necessary," says Dr. Evans, an internationally-recognized authority on regenerative medicine. "In fact, we plan to test if reprogramming iPS cells without AID may even be helpful."

One reason is that AID can cause genetic mutations that can lead to cancer. AID is best known as a master regulator of antibody diversity in B cells, and in order to create varied types of beneficial antibodies, it routinely mutates antibody genes. But sometimes the process goes awry, resulting in development of B cell lymphoma, Dr. Evans says. "That leads us to believe that if you can reprogram cells without AID, it could reduce risk of potential mutations, and thus be safer."

iPS Cells Without AID Remember What They Once Were

In order to push a cell, such as a fibroblast, to revert to an iPS cell, the epigenetic "markers" that define an adult cell must be removed. "All cells of the body have the same genes, but they are used differently in different tissues," Dr. Evans explains. "If an undifferentiated cell becomes a heart cell, somehow it has to lock in and stabilize that particular adult phenotype and not forget what it is."

One way that function is accomplished is by placing a methylation group on top of certain genes that activate other cell destinations — such as to become a liver cell — usually switching those genes off. "We have known how these marks are put on genes, but we didn't know how they were taken off in the process of pushing an adult cell to revert back to a stem-cell-like state," Dr. Evans says.

Dr. Evans and his colleagues found that the AID enzyme removed those epigenetic markers.

They then created a mouse that did not produce AID to see if the animal's adult fibroblast cells could be pushed back to iPS cells. "If you need AID to reprogram the cells, you shouldn't be able to do it, or do it well."

Surprisingly, they found that the cells at first seemed to want to reprogram even faster than normal cells, but most never fully reverted to a stem-cell-like state. "They eventually crashed and differentiated back into a fibroblast," Dr. Evans says. "What that meant is that they never cleared their memory of being a fibroblast cell. AID efficiently removes that epigenetic memory, smoothing the way for a cell to morph into an undifferentiated state."

But some of the mouse adult fibroblasts lacking AID — those that Dr. Evans says they "babysat" — did become iPS cells.

Despite the fact that reprogramming adult cells without AID is inefficient, the researchers say that the method may offer another advantage besides increased safety.

"It might be useful to allow epigenetic memory to be retained," Dr. Evans says. "If you want to make new cardiac cells to repair a patient's heart, it might be better to start with a cardiac cell and push it to become an iPS cell, from which other cardiac cells could be made. If these cells remember they were cardiac cells, they might make a better heart cell than if they came from reprogrammed fibroblasts."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Id1 Gene Interferes With Immune System
Uncovering new functions of a gene implicated in cancer growth opens new therapeutic possibilities.
Thursday, April 30, 2015
New Genomic Research Amends Earlier Triple Negative Breast Cancer Finding
Previously reported molecular finding unable to be validated.
Thursday, April 16, 2015
Two Genes are Important Key to Regulating Immune Response
A research team at Weill Cornell Medical College has identified two genes that may be crucial to the production of an immune system cytokine called interleukin-10.
Wednesday, January 09, 2008
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Finding Links and Missing Genes
A catalogue of large-scale genetic changes around the world.
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos