Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fetal Stress Disrupts the Way Genes are Transmitted

Published: Tuesday, August 06, 2013
Last Updated: Tuesday, August 06, 2013
Bookmark and Share
New research suggests that a disruption of genetic imprinting often happens prenatally, implicating fetal stressors as long-term risk factor for chronic disease.

If you think stress is killing you, you may be right, but what you don't know is that stress might have harmed your health even before you were born. In a new report appearing in the August 2013 issue of The FASEB Journal, Harvard researchers find that epigenetic disruptions, which are associated with chronic disease later in life, are already common at birth. Possibly, these aberrations result from stressors in the intrauterine environment (e.g. maternal smoking, maternal diet, or high levels of endocrine-disrupting chemicals). This finding supports the belief that seeds of disease are sown before birth, increasing the importance of optimal prenatal care.

"This study may help us understand whether epigenetic mechanisms contribute to chronic disease susceptibility already prior to birth," said Karin Michels, Sc.D., Ph.D., study author from Harvard Medical School in Boston, Mass. "We are currently exploring which stressors during prenatal life may contribute to these epigenetic disruptions."

To make this discovery, Michels and colleagues examined the expression pattern of imprinted genes important for growth and development. Researchers analyzed the parental expression pattern in the cord blood and placenta of more than 100 infants and followed up this analysis with methylation and expression studies. The results lent credence to the emerging theme that susceptibility to disease may indeed originate in utero. Additionally, this research showed that a high degree of disruption occurred during the imprinting of a gene called IGF2, which was expressed from both alleles in the cord blood of 22 percent of study subjects. Loss of imprinting of IGF2 has been associated with several cancers, including Wilms Tumor, colorectal and breast cancer and childhood disorders such as Beckwith-Wiedemann Syndrome.

"For a long time, doctors have considered fetal stress as a symptom of serious familial disease," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Now, we see that fetal stress is in and of itself a long-term risk factor for chronic disease: it changes the way we inherit genes from our parents."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Gene That Lowers Heart Attack Risk Identified
Individuals with a rare twelve-letter deletion from a gene on chromosome 17 have significantly reduced non-HDL cholesterol levels and a 35% lower than average risk of heart disease.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!