Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Genes for Childhood Epilepsies Discovered

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
New strategy may find more genes and provide a better understanding of these and other complex neurological disorders.

A genetic study of childhood epilepsies has linked two new genes to severe forms of disease and provides a novel strategy for identifying therapy targets. This study used a cutting-edge genetic technique, called exome sequencing, to search for new mutations that are not inherited. The results suggest this may be a highly effective way to find and confirm many disease-causing gene mutations.

“It appears that the time for using this approach to understand complex neurological disorders has arrived,” said David Goldstein, Ph.D., director of the Center for Human Genome Variation at Duke University Medical Center, Durham, N.C., and a leader of the study. “This moderately-sized study identified an unusually large number of disease-causing mutations and provides a wealth of new information for the epilepsy research community to explore.”

The study is part of a worldwide, $25 million project, largely funded by the National Institutes of Health, called Epilepsy 4000 (Epi4K). Epi4K’s mission is to use the latest genetic techniques to sequence and analyze DNA from 4000 epilepsy patients and their relatives. To do this, the researchers and NIH staff involved organized a team of international research institutions devoted to the mission, called the Epilepsy Centers without Walls. This approach facilitates the sharing and analysis of DNA sequences and patient information among the dozens of institutions participating in the project. The study, published in Nature by the Epi4K and Epilepsy Phenome/Genome Project (EPGP) Investigators, found as many as 25 epilepsy-causing mutations in new and previously identified genes.

“These promising results highlight the strength of supporting large international research teams devoted to studying the genetics behind highly complex neurological disorders,” said Story Landis, Ph.D., director of NIH’s National Institute of Neurological Disorders and Stroke (NINDS). The project is also led by Daniel Lowenstein, M.D., a vice chair of the Department of Neurology at the University of California, San Francisco (UCSF) and Sam Berkovic, M.D., director of the Epilepsy Research Center at the University of Melbourne, Australia on behalf of an international team of investigators.

Epilepsy is a group of neurological disorders caused by abnormal firing of nerve cells in the brain which often produces debilitating seizures and a range of other symptoms. More than 2 million people in the United States suffer from epilepsies, and infants and children have a greater chance of having the disorders than adults. Although some studies have found genes associated with rare inherited forms of epilepsy, finding genes associated with the majority of epilepsies has been difficult.

“Unlike some diseases many of the genetic mutations associated with severe childhood epilepsies appear to be new mutations that are not inherited,” said Randall Stewart, Ph.D., a program director at NINDS. “This Epi4K-EPGP project was established to find such mutations.”

In this study, the researchers used exome sequencing to find mutations that might cause two devastating forms of childhood epilepsy, called infantile spasms and Lennox-Gastaut Syndrome. DNA and clinical data were originally collected through the NIH-funded Epilepsy Phenome/Genome Project which was led by Dr. Lowenstein and Elliot Sherr, M.D., Ph.D., director of the Comprehensive Center for Brain Development at UCSF and Dr. Ruben Kuzneicky, M.D., professor at the New York University Comprehensive Epilepsy Center.

“The Epilepsy Phenome/Genome Project, with its massive data set, laid the groundwork for this study, and the key to this success has been the extraordinary level of collaboration among more than 115 investigators, study coordinators and administrative personnel involved in both EPGP and Epi4K,” said Dr. Lowenstein.

Exomes essentially represent all of a person’s genes. Their DNA sequences provide the instructions for constructing all the proteins made by the body. The researchers compared exome sequences of 264 children with the sequences of their parents who do not have epilepsy. Differences in the sequences of these subject trios were analyzed using a number of statistical tools to identify potential disease causing mutations. Compared with some genetic studies, this research sequenced DNA from relatively few patients. Nonetheless, the researchers were able to find disease-causing mutations in six genes: four had been described before using other genetic techniques and two genes are implicated for the first time.

Using novel genetic analysis techniques, the researchers also demonstrated that epilepsy-causing mutations are concentrated in genes that are highly sensitive, or intolerant, to changes in their DNA sequence in human populations. These genes are so sensitive that even the slightest change can cause the gene not to work, leading to death or severe forms of diseases.

“This study used a very sophisticated bioinformatics approach to analyze DNA sequences and find disease-causing mutations,” said Katrina Gwinn, M.D., a program director at NINDS.

To find more genes that are likely to have epilepsy-causing mutations, the researchers searched thousands of exome sequences from healthy volunteers who participated in the National Heart Lung and Blood Institute Exome Sequencing Project. They looked for gene sequences that had only slight differences among subjects because previous studies showed that these sequences are highly sensitive to mutations. The researchers estimated that up to 90 genes could carry epilepsy-causing mutations and that many of the mutations implicated in the risk of epilepsy have been previously associated with other neurodevelopmental diseases, including autism.

“One of the most encouraging aspects of this study is that we’re beginning to see how best to interpret and make effective use of exome sequence data,” said Dr. Goldstein. “We anticipate that further studies will identify many new disease-causing genes and we intend to develop a watch list of the genes which summarizes their clinical characteristics in way that will be helpful for doctors, patients, and researchers.”

For instance, the researchers analyzed how the genes that could carry epilepsy-causing mutations work and interact. Their analysis showed that the genes can be grouped into a few networks. Each network appears to play an important role in the growth and development of a child’s nervous system.

“It appears that a few pathways may be responsible for many severe pediatric epilepsies,” said Dr. Goldstein, “If true, then understanding epilepsies will be more manageable and we can find common pathways to target with drugs and other therapies.”

In addition to grants from NINDS (NS053998, NS077364, NS077274, NS077303, NS077276), this study was funded by Finding a Cure for Epilepsy and Seizures and the Richard Thalheimer Philanthropic Fund.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Cancer Related Immune Response Genes Uncovered
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!