Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Genes for Childhood Epilepsies Discovered

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
New strategy may find more genes and provide a better understanding of these and other complex neurological disorders.

A genetic study of childhood epilepsies has linked two new genes to severe forms of disease and provides a novel strategy for identifying therapy targets. This study used a cutting-edge genetic technique, called exome sequencing, to search for new mutations that are not inherited. The results suggest this may be a highly effective way to find and confirm many disease-causing gene mutations.

“It appears that the time for using this approach to understand complex neurological disorders has arrived,” said David Goldstein, Ph.D., director of the Center for Human Genome Variation at Duke University Medical Center, Durham, N.C., and a leader of the study. “This moderately-sized study identified an unusually large number of disease-causing mutations and provides a wealth of new information for the epilepsy research community to explore.”

The study is part of a worldwide, $25 million project, largely funded by the National Institutes of Health, called Epilepsy 4000 (Epi4K). Epi4K’s mission is to use the latest genetic techniques to sequence and analyze DNA from 4000 epilepsy patients and their relatives. To do this, the researchers and NIH staff involved organized a team of international research institutions devoted to the mission, called the Epilepsy Centers without Walls. This approach facilitates the sharing and analysis of DNA sequences and patient information among the dozens of institutions participating in the project. The study, published in Nature by the Epi4K and Epilepsy Phenome/Genome Project (EPGP) Investigators, found as many as 25 epilepsy-causing mutations in new and previously identified genes.

“These promising results highlight the strength of supporting large international research teams devoted to studying the genetics behind highly complex neurological disorders,” said Story Landis, Ph.D., director of NIH’s National Institute of Neurological Disorders and Stroke (NINDS). The project is also led by Daniel Lowenstein, M.D., a vice chair of the Department of Neurology at the University of California, San Francisco (UCSF) and Sam Berkovic, M.D., director of the Epilepsy Research Center at the University of Melbourne, Australia on behalf of an international team of investigators.

Epilepsy is a group of neurological disorders caused by abnormal firing of nerve cells in the brain which often produces debilitating seizures and a range of other symptoms. More than 2 million people in the United States suffer from epilepsies, and infants and children have a greater chance of having the disorders than adults. Although some studies have found genes associated with rare inherited forms of epilepsy, finding genes associated with the majority of epilepsies has been difficult.

“Unlike some diseases many of the genetic mutations associated with severe childhood epilepsies appear to be new mutations that are not inherited,” said Randall Stewart, Ph.D., a program director at NINDS. “This Epi4K-EPGP project was established to find such mutations.”

In this study, the researchers used exome sequencing to find mutations that might cause two devastating forms of childhood epilepsy, called infantile spasms and Lennox-Gastaut Syndrome. DNA and clinical data were originally collected through the NIH-funded Epilepsy Phenome/Genome Project which was led by Dr. Lowenstein and Elliot Sherr, M.D., Ph.D., director of the Comprehensive Center for Brain Development at UCSF and Dr. Ruben Kuzneicky, M.D., professor at the New York University Comprehensive Epilepsy Center.

“The Epilepsy Phenome/Genome Project, with its massive data set, laid the groundwork for this study, and the key to this success has been the extraordinary level of collaboration among more than 115 investigators, study coordinators and administrative personnel involved in both EPGP and Epi4K,” said Dr. Lowenstein.

Exomes essentially represent all of a person’s genes. Their DNA sequences provide the instructions for constructing all the proteins made by the body. The researchers compared exome sequences of 264 children with the sequences of their parents who do not have epilepsy. Differences in the sequences of these subject trios were analyzed using a number of statistical tools to identify potential disease causing mutations. Compared with some genetic studies, this research sequenced DNA from relatively few patients. Nonetheless, the researchers were able to find disease-causing mutations in six genes: four had been described before using other genetic techniques and two genes are implicated for the first time.

Using novel genetic analysis techniques, the researchers also demonstrated that epilepsy-causing mutations are concentrated in genes that are highly sensitive, or intolerant, to changes in their DNA sequence in human populations. These genes are so sensitive that even the slightest change can cause the gene not to work, leading to death or severe forms of diseases.

“This study used a very sophisticated bioinformatics approach to analyze DNA sequences and find disease-causing mutations,” said Katrina Gwinn, M.D., a program director at NINDS.

To find more genes that are likely to have epilepsy-causing mutations, the researchers searched thousands of exome sequences from healthy volunteers who participated in the National Heart Lung and Blood Institute Exome Sequencing Project. They looked for gene sequences that had only slight differences among subjects because previous studies showed that these sequences are highly sensitive to mutations. The researchers estimated that up to 90 genes could carry epilepsy-causing mutations and that many of the mutations implicated in the risk of epilepsy have been previously associated with other neurodevelopmental diseases, including autism.

“One of the most encouraging aspects of this study is that we’re beginning to see how best to interpret and make effective use of exome sequence data,” said Dr. Goldstein. “We anticipate that further studies will identify many new disease-causing genes and we intend to develop a watch list of the genes which summarizes their clinical characteristics in way that will be helpful for doctors, patients, and researchers.”

For instance, the researchers analyzed how the genes that could carry epilepsy-causing mutations work and interact. Their analysis showed that the genes can be grouped into a few networks. Each network appears to play an important role in the growth and development of a child’s nervous system.

“It appears that a few pathways may be responsible for many severe pediatric epilepsies,” said Dr. Goldstein, “If true, then understanding epilepsies will be more manageable and we can find common pathways to target with drugs and other therapies.”

In addition to grants from NINDS (NS053998, NS077364, NS077274, NS077303, NS077276), this study was funded by Finding a Cure for Epilepsy and Seizures and the Richard Thalheimer Philanthropic Fund.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Scientific News
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
Shining A Light On Bladder Cancer
Researchers scrutinize patterns of mutations in bladder tumor genomes, gleaning insights into the roles of DNA repair and tobacco-related DNA damage.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
How Scientists Use DNA to Track Disease Outbreaks
They’re the top questions on everyone’s mind when a new disease outbreak happens: where did the virus come from? When did this happen? How long has it been spreading in a particular country or group of people?
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Stem Cells Know How to Unwind
Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!