Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

An Easier Way to Control Genes

Published: Tuesday, September 03, 2013
Last Updated: Tuesday, September 03, 2013
Bookmark and Share
New method for turning genes on and off could enable more complex synthetic biology circuits.

MIT researchers have shown that they can turn genes on or off inside yeast and human cells by controlling when DNA is copied into messenger RNA — an advance that could allow scientists to better understand the function of those genes.

The technique could also make it easier to engineer cells that can monitor their environment, produce a drug or detect disease, says Timothy Lu, an assistant professor of electrical engineering and computer science and biological engineering and the senior author of a paper describing the new approach in the journal ACS Synthetic Biology.

“I think it’s going to make it a lot easier to build synthetic circuits,” says Lu, a member of MIT’s Synthetic Biology Center. “It should increase the scale and the speed at which we can build a variety of synthetic circuits in yeast cells and mammalian cells.”

The new method is based on a system of viral proteins that have been exploited recently to edit the genomes of bacterial and human cells. The original system, called CRISPR, consists of two components: a protein that binds to and slices DNA, and a short strand of RNA that guides the protein to the right location on the genome.

“The CRISPR system is quite powerful in that it can be targeted to different DNA binding regions based on simple recoding of these guide RNAs,” Lu says. “By simply reprogramming the RNA sequence you can direct this protein to any location you want on the genome or on a synthetic circuit.”

Lead author of the paper is Fahim Farzadfard, an MIT graduate student in biology. Samuel Perli, a graduate student in electrical engineering and computer science, is also an author.

Targeting transcription

In previous studies, CRISPR has been used to snip out pieces of a gene to disable it or replace it with a new gene. Lu and his colleagues decided to use the CRISPR system for a different purpose: controlling gene transcription, the process by which a sequence of DNA is copied into messenger RNA (mRNA), which carries out the gene’s instructions.

Transcription is tightly regulated by proteins called transcription factors. These proteins bind to specific DNA sequences in the gene’s promoter region and either recruit or block the enzymes needed to copy that gene into mRNA.

For this study, the researchers adapted the CRISPR system to act as a transcription factor. First, they modified the usual CRISPR protein, known as Cas9, so that it could no longer snip DNA after binding to it. They also added to the protein a segment that activates or represses gene expression by modulating the cell’s transcriptional machinery.

To get Cas9 to the right place, the researchers also delivered to the target cells a gene for an RNA guide that corresponds to a DNA sequence on the promoter of the gene they want to activate.

The researchers showed that once the RNA guide and the Cas9 protein join together inside the target cell, they accurately target the correct gene and turn on transcription. To their surprise, they found that the same Cas9 complex could also be used to block gene transcription if targeted to a different part of the gene.

“This is nice in that it allows you do to positive and negative regulation with the same protein, but with different guide RNAs targeted to different positions in the promoter,” Lu says.

‘A lot of flexibility’

The new system should be much easier to use than two other recently developed transcription-control systems based on DNA-binding proteins known as zinc fingers and transcription activator-like effector nucleases (TALENs), Lu says. Although they are effective, designing and assembling the proteins is time-consuming and expensive.

“There’s a lot of flexibility with CRISPR, and it really comes from the fact that you don’t have to spend any more time doing protein engineering. You can just change the nucleic acid sequence of the RNAs,” Lu says.

The researchers also designed the transcription-control system so that it can be induced by certain small molecules that can be added to the cell, such as sugars. To do this, they engineered the genes for the guide RNAs so that they are only produced when the small molecule is present. Without the small molecule, there is no guide RNA and the targeted gene is undisturbed.

This type of control could be useful for studying the role of naturally occurring genes by turning them on and off at specific points during development or disease progression, Lu says.

Lu is now working on building more advanced synthetic circuits to perform applications such as making decisions based on several inputs from a cell’s environment. “We’d like to be able to scale this up and demonstrate the most complex circuits that anyone’s ever built in yeast and mammalian cells,” he says.

The research was funded by the Defense Advanced Research Projects Agency, the National Institutes of Health New Innovator Award and the National Science Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Linking RNA Structure and Function
Biologists have deciphered a lncRNA structure and used the information to investigate its cellular protein interactions.
Friday, September 09, 2016
Protecting Privacy in Genomic Databases
System helps ensure databases used in medical research will not leak patients’ personal information.
Wednesday, August 10, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Wednesday, January 13, 2016
How Cancer Cells Spread
Study offers new targets for drugs that may prevent cancer from spreading.
Thursday, December 17, 2015
Scaling Up Synthetic-Biology Innovation
MIT professor’s startup makes synthesizing genes many times more cost effective.
Monday, December 14, 2015
Delivering microRNAs for Cancer Treatment
Scientists exploit gene therapy to shrink tumors in mice with an aggressive form of breast cancer.
Wednesday, December 09, 2015
Scientific News
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Bacteria Use Ranking Strategy to Fight Off Viruses
Researchers have explained why microbes store virus confrontation information sequentially, with most recent attacks first.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Mosquito Genetics Determine Tastes
Study reveals mosuito's preference for human versus animal biting is determined by genetics.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!