Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Evidence that Cancer Cells Change While Moving throughout Body

Published: Wednesday, September 04, 2013
Last Updated: Wednesday, September 04, 2013
Bookmark and Share
For the majority of cancer patients it is the spread or “metastasis” of cancer cells from the primary tumor to secondary locations throughout the body that is the problem.

That’s why a major focus of contemporary cancer research is how to stop or fight metastasis.

Previous lab studies suggest that metastasizing cancer cells undergo a major molecular change when they leave the primary tumor – a process called epithelial-to-mesenchymal transition (EMT). As the cells travel from one site to another, they pick up new characteristics. More importantly, they develop a resistance to chemotherapy that is effective on the primary tumor. But confirmation of the EMT process has only taken place in test tubes or in animals.

In a new study, published in the Journal of Ovarian Research, Georgia Tech scientists have direct evidence that EMT takes place in humans, at least in ovarian cancer patients. The findings suggest that doctors should treat patients with a combination of drugs: those that kill cancer cells in primary tumors and drugs that target the unique characteristics of cancer cells spreading through the body.

The researchers looked at matching ovarian and abdominal cancerous tissues in seven patients. Pathologically, the cells looked exactly the same, implying that they simply fell off the primary tumor and spread to the secondary site with no changes. But on the molecular level, the cells were very different. Those in the metastatic site displayed genetic signatures consistent with EMT. The scientists didn’t see the process take place, but they know it happened.

“It’s like noticing that a piece of cake has gone missing from your kitchen and you turn to see your daughter with chocolate on her face,” said John McDonald, director of Georgia Tech’s Integrated Cancer Research Center and lead investigator on the project. “You didn’t see her eat the cake, but the evidence is overwhelming. The gene expression patterns of the metastatic cancers displayed gene expression profiles that unambiguously identified them as having gone through EMT.”

The EMT process is an essential component of embryonic development and allows for reduced cell adhesiveness and increased cell movement.

According to Benedict Benigno, collaborating physician on the paper, CEO of the Ovarian Cancer Institute and director of gynecological oncology at Atlanta’s Northside Hospital, “These results clearly indicate that metastasizing ovarian cancer cells are very different from those comprising the primary tumor and will likely require new types of chemotherapy if we are going to improve the outcome of these patients.”

Ovarian cancer is the most malignant of all gynecological cancers and responsible for more than 14,000 deaths annually in the United States alone. It often reveals no early symptoms and isn’t typically diagnosed until after it spreads.

“Our team is hopeful that, because of the new findings, the substantial body of knowledge that has already been acquired on how to block EMT and reduce metastasis in experimental models may now begin to be applied to humans,” said Georgia Tech graduate student Loukia Lili, co-author of the study.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nucleic Acid Computing Inside Cells
Using strands of nucleic acid, scientists have demonstrated basic computing operations inside a living mammalian cell.
Monday, January 25, 2016
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Tuesday, October 06, 2015
Studies Reveal Diverse Molecular Mechanisms Underlying Evolution
Researchers have sequenced the genomes and transcriptomes of five species of African cichlid fishes and uncovered a variety of features that enabled the fishes to thrive in new habitats and ecological niches within the Great Lakes of East Africa.
Monday, September 08, 2014
Scientific News
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Bacteria Use Ranking Strategy to Fight Off Viruses
Researchers have explained why microbes store virus confrontation information sequentially, with most recent attacks first.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Mosquito Genetics Determine Tastes
Study reveals mosuito's preference for human versus animal biting is determined by genetics.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!