Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NanoString Technologies and BD Biosciences Sign Collaboration Agreement

Published: Monday, September 09, 2013
Last Updated: Monday, September 09, 2013
Bookmark and Share
New workflow to provide scientists with tools that enable single cell analysis for oncology, immunology and stem cell research.

NanoString Technologies, Inc. and BD Biosciences announced a collaboration agreement for the development of a single cell isolation and analysis workflow.

Under the agreement, the companies will jointly develop a workflow using the NanoString nCounter® Analysis System (including the nCounter Single Cell Assay) and the BD Flow Cytometry cell sorter product line, (emphasizing the new BD FACSJazz™ Cell Sorting System). The combined workflow will enable single cell gene expression analysis for research applications such as oncology, immunology and stem cell research. Collaboration activities will also include the development of materials documenting the workflow protocol, as well as co-hosting meetings and webinars to educate scientists about the single cell workflow.

“Maximizing both the quantity and quality of data that can be extracted from a single cell is critical to the emerging field of single cell biology. The nCounter Analysis System can analyze entire gene pathways and provides a highly precise and reproducible digital output, making it ideally suited to the task,” said Brad Gray, President and Chief Executive Officer, NanoString Technologies. “The nCounter Analysis System and the BD FACSJazz Cell Sorting System can together provide a powerful and efficient workflow for single cell gene expression analysis.”

“Our collaboration with NanoString Technologies furthers BD’s commitment to providing researchers advanced solutions for cell analysis and isolation,” said Alberto Mas, President, BD Biosciences. “We believe this new sorting workflow will complement the recent and very rapid advances in genomic studies that value the requirement for greater sample integrity for critical single cell analysis.”

NanoString Technologies’ nCounter Analysis System is a multi-application digital detection and counting system with a highly automated and simple workflow. The company’s Single Cell Gene Expression application provides researchers with a highly flexible and sensitive approach to discovering differences in cell-to-cell gene expression profiles. The application enables up to 800 genes to be detected in a single tube.

The BD FACSJazz Cell Sorting System is capable of identifying, characterizing and isolating single or multiple cells – from complex or extremely rare cell populations – and depositing them in 96 and 384 well plates to provide rapid cell isolation, tracking and identification throughout the process.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NanoString, HalioDx Collaborate
Company has announced collaboration with HalioDx to jointly develop and commercialize novel gene expression assays in immuno-oncology.
Tuesday, April 12, 2016
NanoString Technologies and MD Anderson to Collaborate
Partners aim to jointly discover and validate biomarker signatures for immuno-oncology and targeted therapeutics.
Friday, April 03, 2015
NanoString, Brigham and Women’s Hospital Collaborate
Research collaboration to accelerate translation of genomic discoveries into clinical diagnostics in oncology.
Wednesday, October 08, 2014
Scientific News
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Lose Weight, Escape the Eight: Weight-Based Cancer Risk
IARC has identified eight additional cancer sites linked to overweight and obesity.
Coffee Consumption Linked to Genes
Researchers have identified a gene that influences coffee consumption. The gene is thought to relate to caffeine breakdown.
Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Demonstrating LNP Delivery of CRISPR Components
Intellia has presented data demonstrating in vivo gene editing ising liquid nanoparticles (LNPs) to deliver CRISPR/Cas9.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Creating Embryos with 'Heteroplasmy'
New discovery in genetic research could lead to treatments for mitochondrial diseases.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!