Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH Awards Focus on Nanopore Technology For DNA Sequencing

Published: Monday, September 09, 2013
Last Updated: Monday, September 09, 2013
Bookmark and Share
The use of nanopore technology aimed at more accurate and efficient DNA sequencing is the main focus of grants awarded by the NIH.

Nearly $17 million to eight research teams has been awarded through the National Human Genome Research Institute Advanced DNA Sequencing Technology program.  

"Nanopore technology shows great promise, but it is still a new area of science. We have much to learn about how nanopores can work effectively as a DNA sequencing technology, which is why five of the program's eight grants are exploring this approach," said Jeffery A. Schloss, Ph.D., program director for NHGRI's Advanced DNA Sequencing Technology program and director of the Division of Genome Sciences.

Nanopore-based DNA sequencing involves threading single DNA strands through tiny pores. Individual base pairs -- the chemical letters of DNA - are then read one at a time as they pass through the nanopore. The bases are identified by measuring the difference in their effect on current flowing through the pore. For perspective, a human hair is 100,000 nanometers in diameter; a strand of DNA is only 2 nanometers in diameter. Nanopores used in DNA sequencing are 1 to 2 nanometers in diameter.

This technology offers many potential advantages over current DNA sequencing methods, said Dr. Schloss. Such advantages include real-time sequencing of single DNA molecules at low cost and the ability for the same molecule to be reassessed over and over again. Current systems involve isolating DNA and chemically labeling and copying it. DNA has to be broken up, and small segments are sequenced many times. Only the first step of isolating the DNA would be necessary with nanopore technology. 

Innovation is crucial in these as well as the other (non-nanopore) studies being funded. For example, one research team eventually hopes to use light to sequence DNA on a cell phone camera chip for under $100. 

The new grants are awarded to:  

University of Illinois, Urbana-Champaign, $2.47 million over four years (pending available funds) Principal Investigator: Oleksii Aksimentiev, Ph.D.

Dr. Aksimentiev and his colleagues plan to use nanopores as sensors. The researchers are studying the effects of combining synthetic nanopores with a light-based technique to control the flow of DNA molecules through the pores. They will use a type of spectroscopy to read the chemical sequence of the DNA.  

University of New Mexico Health Sciences Center, Albuquerque, $1.35 million over three years (pending available funds) Principal Investigator: Jeremy Edwards, Ph.D.

Dr. Edwards and his colleagues plan to develop innovative molecular biology tools to improve whole-genome sequencing, which entails reading a person's entire genetic blueprint. The researchers hope that better methods of preparing the DNA molecules for sequencing will help scientists identify and link genetic variants to disease and, ultimately, lead to new treatments.  

University of Washington, Seattle, $3.83 million over four years (pending available funds) Principal Investigator: Jens Gundlach, Ph.D.

The researchers plan to continue developing the use of nanopore DNA sequencing technology involving a type of protein nanopore called MspA. Part of their research will focus on improving the control of movement of DNA through the nanopore and on developing algorithms to identify DNA bases.

Columbia University, New York City, $5.25 million over three years (pending available funds) Principal Investigators: Jingyue Ju, Ph.D., George M. Church, Ph.D., (Harvard Medical School, Boston) and James John Russo, Ph.D. (Columbia University, New York City) 

Dr. Ju and his colleagues plan to develop a miniaturized electronic system using nanopores to analyze single molecules of DNA in real time. They will construct large arrays of nanopores to create DNA sequencing chips, enabling them to determine DNA bases during a specific biochemical reaction. They hope this technique will enable them to read large sections of DNA more accurately and rapidly than is now possible. 

Eve Biomedical, Inc., Mountain View, CA., $493,000 over two years (pending available funds) Principal Investigator: Theofilos Kotseroglou, Ph.D. 

Dr. Kotseroglou's research team intends to develop a DNA sequencing system that can sequence an entire human genome for under $100. The overall system will be based on using light to sequence DNA on a cell phone camera chip. For now, his group plans to continue studying ways to accurately read long sections of DNA and develop software tools and bioinformatics.

University of Massachusetts, Amherst, $1.07 million over four years (pending available funds) Principal Investigator: Murugappan Muthukumar, Ph.D.

Dr. Muthukumar's research group plans a theoretical approach to study several major challenges underlying nanopore-based DNA sequencing, including slowing down the rate at which DNA molecules flow through the pores, the effects of specific ions, changes in the shape of the DNA molecule and other aspects of the environment.

University of North Carolina at Chapel Hill, $2.05 million over four years (pending available funds) Principal Investigator: John Michael Ramsey, Ph.D.

Dr. Ramsey and his co-workers plan to develop a low-cost method for rapidly mapping individual genomes. Such maps will help determine how large mutations in DNA structure contribute to human disease and improve diagnostic testing using genomics. 

Electronic Biosciences, Inc., San Diego, $239,000 Principal Investigator: Anna Schibel, Ph.D.

Dr. Schibel and her co-workers will develop chemical methods to slow the rate by which single-stranded DNA molecules pass through protein nanopores. Such approaches may enable the development of faster, lower-cost DNA sequencing techniques.    

The costs of DNA sequencing have greatly declined since 2003, when the genome sequencing performed under the Human Genome Project was completed at a cost of approximately $1 billion. Only a year later, in 2004, sequencing a human genome cost an estimated $10-50 million, thanks to improvements in technologies and tools. By 2009, NHGRI met its goal of producing high-quality human genome sequences at a 100-fold reduction in price, or $100,000. While achieving another 100-fold drop in price has been difficult, sequencing a person's genome today costs about $5,000 to $6,000 <>.

The grant numbers of the awards are the following: R01 HG007406; R01 HG006876; R01 HG005115; R01 HG007415; R43 HG007386; R01 HG002776; R01 HG007407; and R43 HG006878.

Additional information about NHGRI can be found below.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos