Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cancer Vaccine Begins Phase I Clinical Trials

Published: Wednesday, September 11, 2013
Last Updated: Wednesday, September 11, 2013
Bookmark and Share
Cross-disciplinary team brings novel therapeutic cancer vaccine to human clinical trials.

A cross-disciplinary team of scientists, engineers, and clinicians announced today that they have begun a Phase I clinical trial of an implantable vaccine to treat melanoma, the most lethal form of skin cancer.

The effort is the fruit of a new model of translational research being pursued at Harvard University that integrates the latest cancer research with bioinspired technology development. It was led by David J. Mooney, who is the Robert P. Pinkas Family Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard, along with Glenn Dranoff, who is co-leader of Dana-Farber Cancer Institute’s Cancer Vaccine Center, a professor at Harvard Medical School, and an associate faculty member at the Wyss Institute.

Most therapeutic cancer vaccines available today require doctors to first remove the patient’s immune cells from the body, then reprogram them and reintroduce them back into the body. The new approach, which was first reported to eliminate tumors in mice in Science Translational Medicine in 2009, instead uses a small disk-like sponge about the size of a fingernail that is made from FDA-approved polymers. The sponge is implanted under the skin, and is designed to recruit and reprogram a patient’s own immune cells “on site,” instructing them to travel through the body, home in on cancer cells, then kill them.

The technology was initially designed to target cancerous melanoma in skin, but might have application to other cancers. In the preclinical study reported in Science Translational Medicine, 50 percent of mice treated with two doses of the vaccine—mice that would have otherwise died from melanoma within about 25 days—showed complete tumor regression.

“Our vaccine was made possible by combining a wide range of biomedical expertise that thrives in Boston and Cambridge,” said Mooney, who specializes in the design of biomaterials for tissue engineering and drug delivery. “It reflects the bioinspired engineering savvy and technology development focus of engineers and scientists at the Wyss Institute and Harvard SEAS, as well as the immunological and clinical expertise of the researchers and clinicians at Dana-Farber and Harvard Medical School.”

“This is expected to be the first of many new innovative therapies made possible by the Wyss Institute’s collaborative model of translational research that will enter human clinical trials,” said Wyss Founding Director Don Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and a Professor of Bioengineering at Harvard SEAS. “It validates our approach, which strives to move technologies into the clinical space much faster than would be possible in a traditional academic environment. It’s enormously gratifying to see one of our first technologies take this giant leap forward.”

The Wyss Institute comprises a consortium of researchers, engineers, clinicians, and staff with industrial and business development experience from Harvard University and nine other collaborating institutions in Greater Boston.

“It is rare to get a new technology tested in the laboratory and moved into human clinical trials so quickly,” said Dranoff, who also leads the Dana-Farber/Harvard Cancer Center Program in Cancer Immunology. “We’re beyond thrilled with the momentum, and excited about its potential.”

Recruitment of participants for the clinical trial began recently under the leadership of F. Stephen Hodi, Jr., Director of Dana-Farber’s Melanoma Center and Associate Professor of Medicine at Harvard Medical School. The goal of the Phase I study, which is expected to conclude in 2015, is to assess the safety of the vaccine in humans.

The cancer vaccine work has received support from the Wyss Institute, Dana-Farber, and the National Institutes of Health. In addition to Mooney, Dranoff, and Hodi, other collaborators include Edward Doherty and Omar Ali at the Wyss Institute; Jerry Ritz, Director of the Cell Processing Laboratory at Dana-Farber; Sara Russell and Charles Yoon, surgeons at Dana-Farber; and other clinical research team members based at Dana-Farber.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Friday, July 31, 2015
Beyond Average
Researchers have created new platforms to genetically barcode tens of thousands of cells at a time allowing unprecedented detail to be uncovered when studying whole tissue samples.
Tuesday, May 26, 2015
One Molecule at a Time
The ability to study single molecules provides tangible targets for personalised medicine.
Monday, May 18, 2015
Diabetes’ Genetic Variety
Researchers find nine variants that can greatly increase risk from disease.
Friday, September 19, 2014
A Marker for Breast Cancer
Research says it soon may be possible to gauge individual risk for disease, and eventually to treat it.
Tuesday, August 13, 2013
Controlling Genes with Light
New technique can rapidly turn genes on and off, helping scientists better understand their function.
Tuesday, July 23, 2013
Developing Cancer Drugs
Researchers find therapeutic potential in ‘undruggable’ target.
Wednesday, June 19, 2013
Coelacanth Genome Similar to that of Fossils
Unexpected insights from a fish with a 300-million-year-old fossil record.
Thursday, April 18, 2013
One Cell is All You Need
Innovative technique can sequence entire genome from single cell.
Monday, January 07, 2013
Building with DNA Bricks
Harvard’s Wyss Institute creates versatile 3-D nanostructures.
Friday, November 30, 2012
Researchers at Harvard’s Wyss Institute Engineer Novel DNA Barcode
Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have created a new kind of barcode that could come in an almost limitless array of styles.
Tuesday, September 25, 2012
Research on Butterflies Reveals Genetic Sharing
Landmark effort to sequence the genome of a South American butterfly has revealed the key behind its ability to mimic other butterflies.
Monday, May 21, 2012
HC-LITT to Provide Stabilization Technology to the Harvard Research Community
Harvard research community will have access to the Denator’s Stabilizor™ system for stabilizing biological samples.
Friday, April 24, 2009
Harvard University and Oxford Nanopore Technologies Announce Licence Agreement
The agreement aims to progress nanopore science by integrating Harvard discoveries with technology in development at Oxford Nanopore.
Monday, August 11, 2008
Molecule by Molecule, Assay Shows Real-time Gene Activity
The technique could provide Researchers with unprecedented insights into gene expression in living cells.
Thursday, March 23, 2006
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!