Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

“Desperation DNA” Synthesis Could Explain Genetic Mutations

Published: Tuesday, September 17, 2013
Last Updated: Tuesday, September 17, 2013
Bookmark and Share
Researchers have discovered the details of how cells repair breaks in both strands of their DNA, a potentially devastating kind of DNA damage.

When chromosomes experience double-strand breaks resulting from oxidation, ionizing radiation, replication errors and certain metabolic products in cells, they utilize their genetically similar chromosomes to patch the gaps via a mechanism that involves both ends of the broken molecules. To repair a broken chromosome that lost one end, a unique configuration of the DNA replication machinery is deployed as a desperation strategy to allow cells to survive, the researchers discovered.

The collaborative work of graduate students working under Anna Malkova Ph.D., associate professor of biology at Indiana University-Purdue University Indianapolis (IUPUI) and Kirill Lobachev, Ph.D., associate professor of biology at the Georgia Institute of Technology, was critical in the advancement of the project.

The group’s research will be published online this week in the Nature journal, with two graduate students (Natalie Saini from the Georgia Institute of Technology and Sreejith Ramakrishnan from the School of Science at IUPUI) as first authors. Other collaborators include Dr. James Haber, Ph.D., Brandeis University, and Grzegorz Ira, Ph.D., Baylor College of Medicine.

“Previously, we have shown that the rate of mutations introduced by break-induced replication is 1000 times higher as compared to the normal way that DNA is made naturally, but we never understood why,” Malkova said.

The latest research reveals a mode of replication that can operate in non-dividing cells—the state of most of the body’s cells—making this kind of replication a potential route for cancer formation.

“Potentially, this is a textbook discovery,” Lobachev said.

The two labs used cutting-edge analysis techniques and equipment available at only a handful of facilities around the world. This allowed the researchers to see inside yeast cells and freeze the break-induced DNA repair process at different times. They found this mode of DNA repair doesn’t rely on the traditional replication fork — a Y-shaped region of a replicating DNA molecule  — but instead uses a bubble-like structure to synthesize long stretches of missing DNA. This bubble structure copies DNA in a manner not seen before in eukaryotic cells and leads to conservative DNA synthesis that promotes highly increased mutagenesis.

Traditional DNA synthesis, performed during the synthesis-phase of the cell cycle, is done in a semi-conservative manner as proven by Matthew Meselson and Franklin Stahl in 1958, shortly after the discovery of the DNA structure. They found two, new double helices of DNA are produced from a single DNA double helix, with each new double helix containing one original strand of DNA and one new strand. This experiment was termed “the most beautiful experiment in biology.”

“From the point of view of the cell, the whole idea is to survive, and this is a way for them to survive a potentially lethal event. But, it comes at a cost,” Lobachev said.

During break-induced replication, one broken end of DNA is paired with an identical DNA sequence on its partner chromosome. Replication that proceeds in an unusual bubble-like mode then copies hundreds of kilobases of DNA from the donor DNA through the telomere at the ends of chromosomes.

“The break-induced replication bubble has a long tail of single-stranded DNA, which promotes mutations,” Ramakrishnan said. “The single-stranded tail might be responsible for the high mutation-rate, because it can accumulate mutations by escaping the other repair mechanisms that quickly detect and correct errors in DNA synthesis.”

“This is a way of synthesizing DNA in a very robust manner,” Saini added “The synthesis can take place and cover the whole arm of the chromosome, so it’s not just some short patches of synthesis.”

 “This is a way to essentially mutagenize the genome that is not supposed to be replicating,” Lobachev said.

When it comes to cancer, other diseases and even evolution, what seems to be happening are bursts of instability, and the mechanisms promoting such bursts were unclear, Malkova said. The molecular mechanism of break-induced replication unraveled by the new study provides one explanation for the generation of mutations.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Five Genetic Regions Implicated In Cystic Fibrosis Severity
An international consortium of researchers conducted the largest-ever CF genome-wide analysis to find new therapeutic targets.
Greater Understanding Of Polycystic Ovary Syndrome
A new genetic study of over 200,000 women reveals the underlying mechanisms of polycystic ovary syndrome, as well as potential interventions.
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
A Fundamental Protection Mechanism Against Formalin In Mammals is Revealed
Formaldehyde, or formalin, is well known to all of us as a common chemical used in many industrial processes and also as a preservative, remarkably we also produce formaldehyde in our bodies.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos