Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Depletion of ‘Traitor’ Immune Cells Slows Cancer Growth in Mice

Published: Wednesday, September 25, 2013
Last Updated: Wednesday, September 25, 2013
Bookmark and Share
When a person has cancer, some of the cells in his or her body have changed and are growing uncontrollably.

Most cancer drugs try to treat the disease by killing those fast-growing cells, but another approach called immunotherapy tries to stimulate a person’s own immune system to attack the cancer itself.

Now, scientists at the University of Washington have developed a strategy to slow tumor growth and prolong survival in mice with cancer by targeting and destroying a type of cell that dampens the body’s immune response to cancer. The researchers published their findings the week of Sept. 16 in the Proceedings of the National Academy of Sciences.

“We’re really enthusiastic about these results because they suggest an alternative drug target that could be synergistic with current treatments,” said co-author Suzie Pun, a UW associate professor of bioengineering.

Our immune system normally patrols for and eliminates abnormal cells. Macrophages are a type of helpful immune cell that can be converted to the “dark side” by signals they receive from a tumor. When inside a tumor, macrophages can switch from helping the immune system to suppressing the body’s immune response to cancer. Several studies show a correlation between the number of macrophages in tumor biopsies and poor prognosis for patients, Pun said.

The UW team developed a method to target and eliminate the cancer-supporting macrophages in mouse tumors. Researchers predict this strategy could be used along with current treatments such as chemotherapy for cancer patients.

“We think this would amplify cancer treatments and hopefully make them better,” Pun said.

Scientists have a strong understanding of the behavior of macrophages in tumors, but most current methods to remove them do away with all macrophages in the body indiscriminately instead of targeting only the harmful ones that live in tumors.

In this study, UW bioengineering doctoral student Maryelise Cieslewicz designed a method to find a specific amino-acid sequence – or a peptide – that binds only the harmful macrophages in tumors and ignores helpful ones in the bodies of mice. When this sequence was injected into mice with cancer, the research team found that the peptide collected in the macrophage cells within tumors, leaving alone other healthy organs.

Once they discovered they could deliver the peptide sequence to specific cells, the researchers attached another peptide to successfully kill the harmful macrophages without affecting other cells. The mice had slower tumor growth and better survival when treated with this material.

The research team plans to test this method with existing cancer drugs to hopefully boost the success of other treatments.

The peptide sequence that successfully bound to harmful macrophages in mice doesn’t bind to their counterparts in humans, Pun said, but the researchers expect soon to find a similar peptide that targets human cells. They plan to use this method to investigate treatments for other types of cancer, including breast and pancreatic cancers.

The Pun research team collaborated with the UW labs of Elaine Raines in pathology and André Lieber in medical genetics on this study.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$12-Million Awarded to Study the Human Genome in 4-D
Project seeks to understand how a 6.5 feet of DNA folds to fit inside a cell.
Tuesday, October 20, 2015
Editing Genes to Create HIV Killers
Seattle scientists have managed to genetically transform human cells in the lab from HIV targets to HIV killers, and the technique could have implications for cancer and other diseases.
Monday, October 05, 2015
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Wednesday, September 30, 2015
Genetic Errors Linked To Aging Underlie Leukemia That Develops After Cancer Treatment
New research by Daniel Link, MD, and colleagues at The Genome Institute at Washington University has revealed that mutations that accumulate randomly as a person ages can play a role in a fatal form of leukemia that develops after treatment for another cancer.
Wednesday, December 10, 2014
Genetically Identical Bacteria Can Behave in Radically Different Ways
Although a population of bacteria may be genetically identical, individual bacteria within that population can act in radically different ways.
Friday, January 03, 2014
Breakthrough in Detecting DNA Mutations Could Help Treat Tuberculosis and Cancer
The slightest variation in a sequence of DNA can have profound effects.
Tuesday, July 30, 2013
Extra Chromosome 21 Removed from Down Syndrome Cell Line
Scientists have succeeded in removing the extra copy of chromosome 21 in cell cultures derived from a person with Down syndrome, a condition in which the body’s cells contain three copies of chromosome 21.
Monday, November 12, 2012
Chemical Makes Blind Mice See
Researchers who discovered the chemical are working on an improved compound that may someday allow people with degenerative blindness to see again.
Wednesday, August 01, 2012
Exome Sequencing of Health Condition Extremes Can Reveal Susceptibility Genes
Comparing the DNA from patients at the best and worst extremes of a health condition can reveal genes for resistance and susceptibility.
Tuesday, July 17, 2012
Gene Therapy Delivered Once to Blood Vessel Wall Protects Against Atherosclerosis in Rabbit Studies By Leila Gray
The results came from research in rabbits, published July 19 in the journal Molecular Therapy.
Tuesday, July 26, 2011
Genetic Region Linked to a Five Times Higher Lung Cancer Risk
A narrow region on chromosome 15 contains genetic variations strongly associated with familial lung cancer, says a study conducted by scientists at Washington University.
Monday, September 22, 2008
Eight new Human Genome Projects Offer Large-Scale Picture of Genetic Differences among Individual
A nationwide consortium led by the University of Washington has completed the first sequence-based map of structural variations in the human genome.
Tuesday, May 06, 2008
Cancer Cells More Likely to Genetically Mutate
Researcher at University of Washington find that the cells who become cancerous can also become 100 times more likely to genetically mutate than regular cells.
Friday, February 23, 2007
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos