Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Genome-Forward Approach to Tackling Drug-Resistant Cancers

Published: Thursday, September 26, 2013
Last Updated: Thursday, September 26, 2013
Bookmark and Share
If you really want to understand why a particular human cancer resists treatment, you have to be able to study that tumor in a way that just isn't possible in humans.

Cancer biologists have been developing a new approach to this challenge, by transplanting human cancers directly from patients to mice whose crippled immune systems will allow those human tissues to grow. According to research published in the Cell Press publication Cell Reports on September 19th, this new approach permits analysis of human cancer in unprecedented detail. The new work shows that those transplanted cancers, known as PDX (for patient-derived xenografts), are very good genomic replicas of the original at every level of analysis.

Overall, the PDX approach promises to speed the development of new drugs along with doctors' ability to make more precise choices about how those drugs are used to treat patients, the researchers say.

"The development of precision pharmacology is clearly the current focus in PDX research," said Matthew Ellis of Washington University in St Louis. "Human testing is hugely expensive, and often the response rates for the patients on experimental drugs are low because the biology of each patient is not well defined. Panels of clinically and genomically annotated PDX can therefore be very valuable for studying drug action and developing predictive biomarkers. Extensive pre- and post-drug sampling can be conducted to study drug effects and drug resistance in a way that would be impossible in the clinical setting."

In the new study, Ellis and his team transplanted drug-resistant human breast cancers into mice and then made very detailed comparisons of those transplanted tumors versus the originals.

The researchers' deep whole-genome analyses showed a high degree of genomic fidelity. In other words, the complex human tumor tissues in the mice looked very much like those in the people they originally came from. While some new mutations did arise after transplantation, those genetic changes rarely had functional significance.

The researchers were surprised to discover that the original and PDX cancers were similar at the cellular level as well. Cancer cells carrying mutations that were relatively rare in the patient were also maintained at lower frequencies in the mice. Likewise, more dominant clones in the original tumor tended to stay dominant in the mice. This suggests that the frequency of genetically distinct tumor cells is in an equilibrium that survives transplantation into mice for reasons that aren't yet clear.

An analysis of multiple estrogen receptor-positive PDX from patients with endocrine therapy-resistant disease shows just how this approach can yield tumor-specific explanations for therapy resistance. Resistant tumors were associated with different kinds of alterations to the estrogen receptor gene ESR1, the researchers found, producing different responses to endocrine therapy.

"The prevalence of ESR1 mutations and gene arrangements in the luminal PDX was a deep surprise to me as I thought these events were rare," Ellis said. "There had been very sporadic reports of ESR1 point mutations in clinical samples over the years, but to find them at high prevalence in the PDX and therefore in a setting where the link to endocrine therapy resistance can be directly studied was, for me, a critical breakthrough in our understanding of this critical problem."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fountain-of-Youth Gene Repairs Tissue Damage in Adults
Young animals recover from tissue damage better than adults, and from Charles Darwin's time until now, scientists have puzzled over why this is the case.
Monday, November 11, 2013
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Mothers Obesity Could be Passed on in mtDNA
Obesity can predispose offspring in multiple generations to metabolic problems.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!