Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Shimadzu Launches New Series of Planar Diffraction Gratings for Laser System Applications

Published: Tuesday, October 15, 2013
Last Updated: Tuesday, October 15, 2013
Bookmark and Share
The customizable ‘LA series’ planar gratings offer a high diffraction efficiency of more than 90% for near infra-red wavelength laser compressor applications.

Shimadzu diffraction gratings are used in analytical instruments for research in the life sciences, chemistry, environmental monitoring, as well as synchrotron radiation and optical communications applications. Shimadzu Corporation has the top share in Japan for diffraction gratings, underscoring the long history in the development of this technology.

Shimadzu Corporation will launch the new customizable ‘LA series’ of planar diffraction gratings for laser systems on October 16. Diffraction grating elements for 633 nm to 1064 nm waveband with 1600 lines/mm, exhibit a diffraction efficiency of 98%—the highest in this category of technology. This feature is important for expansion and compression of laser pulses for light sources used in laser processing. The gratings can also be used in analytical instruments for research in the life sciences, chemistry, environmental monitoring, and optical communications.

Shimadzu Corporation will produce customized gratings in accordance to customer requests for specific coating properties, and substrate and external shapes, for the production of gratings with the desired, highly specific characteristics.

The “LA Series’ line up was developed specifically for laser applications and is expected contribute to advances in laser processing and medical research.

Background 
Diffraction grating elements separate ‘white light’, which contains many different wavelengths of light, into separate wavelengths. Typically, diffraction gratings consist of a substrate surface ruled with highly ordered grooves with a density of hundreds to thousands of grooves per millimeter. Diffraction gratings are key devices for the extraction of specific wavelengths of light from multi-wavelength light sources for a wide range of industrial applications.

Shimadzu Corporation has a long history in the manufacture of high performance planar, concave, toroidal, and laminar gratings, and currently has the number one share in the Japanese market. Notably, the excellent aberration correction of the gratings is realized by the unique ‘aspheric wave-front recording method’ and reactive ion-beam etching technology. The low stray light and high diffraction efficiency of Shimadzu Corporation diffraction gratings finds a wide range of applications including analytical instruments used for research in the life sciences, chemistry, and environment, synchrotron radiation, as well as optical communications.

Recently, diffraction gratings are being increasingly integrated into (1) variable wavelength lasers that are used as light sources for medical imaging equipment such as optical coherence tomography (OCT);  and (2) high power pulsed lasers for laser processing.

In response to these demands, Shimadzu Corporation has further improved its highly cultivated metal coating technology enabling the production of highly resilient “LA series” diffraction gratings.

The “LA Series’ line up was developed specifically for laser applications and is expected contribute to advances in laser processing and medical research.

Details and Characteristics
Main features of the “LA series” of diffraction gratings.

1. High diffraction efficiency over a wide wavelength range

The groove shapes are designed to attain the highest efficiency for TM polarized light for each laser wavelength band. These device characteristics are particularly suitable for external resonators and cavities, and pulse control.

In particular, diffraction grating elements for 633 nm to 1064 nm waveband with 1600 lines/mm, exhibit a diffraction efficiency of 98%—the highest in this category of technology. This feature is important for expansion and compression of laser pulses for light sources used in laser processing.

2. The ‘LA series’ line up

Shimadzu Corporation has developed nine types of diffraction gratings covering laser wavelengths from the visible to near infra-red for a wide range of applications.

The diffraction gratings are replicas of high precision masters by using two light interference exposure and reactive ion-beam etching technology, thus ensuring a stable supply of gratings and excellent cost performance.

Furthermore, Shimadzu Corporation will produce customized gratings in accordance to customer requests for specific coating properties, and substrate and external shapes for the production of gratings with the desired, highly specific characteristics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Unexpected Epigenetic Enzymes Role in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Tissue Damage Is Key for Cell Reprogramming
Researchers have shown tissue damage is important for cells to return to an embryonic state for cell reprogramming.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!