Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Awakening Genes that Suppress Tumors

Published: Tuesday, October 15, 2013
Last Updated: Tuesday, October 15, 2013
Bookmark and Share
When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably.

A new study led by a researcher at Yale University has uncovered the pathway through which some of these tumor suppressor genes are inactivated — a finding that could have implications for treatment of certain cancers. The study appears online in the journal Genes and Development, published by the Cold Spring Harbor Laboratory Press.

Focusing in mice on the RAS family of cell-signaling oncoproteins (genes that can turn normal cells into cancerous ones), the research team stopped the RNA transcription process that controls cell growth by either turning it on or off. In doing so, they found that RAS-led silencing occurs through a highly ordered genetic pathway that is continuously functioning, and dependent on many co-factors. They also discovered that the silencing action of this pathway is initiated by a specific DNA-binding protein called ZFP354B, and abetted by modified gene expression.

The team further found that all of these steps were required for the tumor suppressor genes to be silenced. This research could lead to development of therapies that interfere with the silencing in RAS-positive cancers, including pancreatic, colorectal, lung, and thyroid cancer.

“Oncogenic RAS mutations are found in about a third of all human cancers, but there are no current therapies that can effectively treat these cancers,” said first author Narendra Wajapeyee, assistant professor of pathology at Yale School of Medicine and a member of Yale Cancer Center. “We have identified a RAS-regulated pathway that initiates and maintains the epigenetic silencing of tumor suppressor genes, and we are hopeful that many of the components of these pathways can be targeted for providing personalized therapy for RAS-mutant cancers.”

Other authors include Sunil Malonia, Rajendra Palakurthy, and Michael Green of the University of Massachusetts Medical School.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Editing Gene Mutations in Anemia
Researchers successfully use a new gene editing strategy to correct mutations that cause a form of anemia.
Wednesday, October 26, 2016
Genes Help Track Odd Migrations of Zika Mosquitoes
Study shows that mosquitoes carrying Zika virus or Dengue fever a genetically distinct around the world.
Wednesday, October 26, 2016
Ovarian Cancer Insight
Study showed tumours release cytokines to attract macrophages, which secrete growth factors that in turn promote tumour growth.
Wednesday, October 19, 2016
New Model for Understanding Human Myeloma
Researchers develop mouse model where mice carry six human genes involved in human tumour growth.
Monday, October 17, 2016
Genes Behind Certain Aggressive Cancers Identified
Researchers have found the genes behind aggressive ovarian and endometrial cancers.
Tuesday, October 11, 2016
Cancer Drug Resistance Runs Deeper Than Single Gene
Study suggests abnormalities in gene networks offer better therapy response prediction than individual genes.
Monday, October 10, 2016
Gene-Editing 'Toolbox' Targets Multiple Genes Simultaneously
Researchers have designed a system that modifies, or edits, multiple genes in a genome at once while minimising unintentional effects.
Thursday, July 28, 2016
Effects Of Maternal Smoking Continue Long After Birth
Yale study shows that maternal smoking is linked to behavioural changes.
Wednesday, June 01, 2016
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Gene that Causes Obesity-Related Metabolic Syndrome Identified
Yale-led research has identified a genetic mutation responsible for the cluster of cardiovascular risk factors that comprise the obesity-related “metabolic syndrome.”
Friday, May 16, 2014
Scientific News
How it Works: Advanced Data Analysis Using Visualization
Visualisation of data can be used to help molecular biologists tackle the vast datasets their experiments create.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Influential Cancer Researcher Receives Agilent Thought Leader Award
Biologist Scott Lowe receives award in recognition for his contributions to cancer biology.
Molecular Origins of Dust Mite Allergy Discovered
Scientists have identified molecules of house dust mites that are targeted by the immune system of children, developing allergic rhinitis and asthma.
Gene-Editing Cures Genetic Blood Disorder in Mice
New technology may offer minimally invasive treatment for genetic disorders of the blood.
Epigenetics and Neural Cell Death
Researchers demonstrate how deregulation of an epigenetic mechanism active in early neurogenesis phases triggers neural cell death.
ALS Study Reveals Role of RNA-Binding Proteins
The findings are a significant step forward in validating RNA-based therapy as a treatment for ALS.
New Compound Shows Promise in Treating Multiple Human Cancers
The research presents a new way to efficiently kill these cancerous cells and holds promise for the treatment of all cancers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos