Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Yale and Harvard Researchers Rewrite an Entire Genome

Published: Friday, October 18, 2013
Last Updated: Friday, October 18, 2013
Bookmark and Share
Scientists recoded the entire genome of an organism and improved a bacterium’s ability to resist viruses.

“This is the first time the genetic code has been fundamentally changed,” said Farren Isaacs, assistant professor of molecular, cellular, and developmental biology at Yale and co-senior author of the research published Oct. 18 in the journal Science. “Creating an organism with a new genetic code has allowed us to expand the scope of biological function in a number of powerful ways.”

The creation of a genomically recoded organism raises the possibility that researchers might be able to retool nature and create potent new forms of proteins to accomplish a myriad purposes — from combating disease to generating new classes of materials.

The research — headed by Isaacs and co-author George Church of Harvard Medical School — is a product of years of studies in the emerging field of synthetic biology, which seeks to re-design natural biological systems for useful purposes.

In this case, the researchers changed fundamental rules of biology.

Proteins, which are encoded by DNA’s instructional manual and are made up of 20 amino acids, carry out many important functional roles in the cell. Amino acids are encoded by the full set of 64 triplet combinations of the four nucleic acids that comprise the backbone of DNA. These triplets (sets of three nucleotides) are called codons and are the genetic alphabet of life.

Isaacs, Jesse Rinehart of Yale, and the Harvard researchers explored whether they could expand upon nature’s handywork by substituting different codons or letters throughout the genome and then reintroducing entirely new letters to create amino acids not found in nature. This work marks the first time that the genetic code has been completely changed across an organism’s genome.

In the new study, the researchers working with E. coli swapped a codon and eliminated its natural stop sign that terminates protein production. The new genome enabled the bacteria to resist viral infection by limiting production of natural proteins used by viruses to infect cells. Isaacs — working with Marc Lajoie of Harvard, Alexis Rovner of Yale, and colleagues — then converted the “stop” codon into one that encodes new amino acids and inserted it into the genome in a plug-and-play fashion. 

The work now sets the stage to convert the recoded bacterium into a living foundry, capable of biomanufacturing new classes of  “exotic” proteins and polymers. These new molecules could lay the foundation for a new generation of materials, nanostructures, therapeutics, and drug delivery vehicles, Isaacs said.

“Since the genetic code is universal, it raises the prospect of recoding genomes of other organisms,” Isaacs said. “This has tremendous implications in the biotechnology industry and could open entirely new avenues of research and applications.”

Other participating researchers from Yale University are Hans Aerni and Adrian Haimovich.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Gene that Causes Obesity-Related Metabolic Syndrome Identified
Yale-led research has identified a genetic mutation responsible for the cluster of cardiovascular risk factors that comprise the obesity-related “metabolic syndrome.”
Friday, May 16, 2014
Tsetse Fly Genome Sequenced
Research opens the door to scientific breakthroughs that could reduce or end African sleeping sickness in sub-Saharan Africa.
Friday, April 25, 2014
Deleting Single Gene Reduces Fat in Mice
By deleting a single gene, researchers at Yale University were able to dramatically reduce fat mass in mice while expanding their lifespan by 20%.
Tuesday, March 25, 2014
Genetic Mutation Causes Lupus in Mice
Discovery could open the way for development of therapies that target the mutation.
Tuesday, January 07, 2014
Yale’s Lifton Receives $3 Million Science Prize
Richard Lifton has received a $3 million Breakthrough Prize in Life Sciences, created by top Silicon Valley entrepreneurs.
Monday, December 16, 2013
Follow the Genes: Yale Team Finds Clues to Origin of Autism
A team of researchers has pinpointed which cell types and regions of the developing human brain are affected by gene mutations linked to autism.
Wednesday, November 27, 2013
Awakening Genes that Suppress Tumors
When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably.
Tuesday, October 15, 2013
New Study Changes View about the Genetics of Leukemia Risk
A gene that helps keep blood free of cancer is controlled by tiny pieces of RNA, a finding that may lead to better ways to diagnose blood cancers.
Tuesday, October 15, 2013
Analysis of Little-Explored Regions of Genome Reveals Dozens of Cancer Triggers
A massive data analysis of natural genetic variants in humans and variants in cancer tumors has implicated dozens of mutations in the development of breast and prostate cancer.
Friday, October 04, 2013
Scientific News
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
UC San Diego Team Up with Illumina to Speed-Read Your Microbiome
Data analysis app accelerates studies aimed at using microbes to predict, diagnose and treat human diseases.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos