Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Global Study Discovers Flurry of New Alzheimer’s Genes

Published: Wednesday, October 30, 2013
Last Updated: Wednesday, October 30, 2013
Bookmark and Share
An international study has uncovered 11 new genes that increase the chance of developing Alzheimer’s disease and provide new clues to ways of fighting it.

The study, which examined close to 75,000 people in 15 countries, doubles the number of known genes that increase Alzheimer’s risk in the elderly. “The international group identified as many new genes in this one study as have been found over the last 15 years combined,” says one of the study’s senior authors, Richard Mayeux, MD, chair of neurology at Columbia University Medical Center.

The study, which is being published in the Nov. issue of Nature Genetics, was conducted by dozens of researchers through the International Genomics of Alzheimer’s Project (IGAP), created in 2011.

None of the 11 new genes has as strong an  effect on Alzheimer’s as the APOE4 gene, which was linked to the disease in the 1990s. APOE4 accounts for about 20 percent of cases, while the strongest of the new genes accounts for, at most, 8 percent of cases.

The significance of the discovery lies instead in the number of possible new drug targets revealed by the study, including some that are involved in processes never before considered in Alzheimer’s.

“Six of our new genes suggest the existence of new pathways underlying Alzheimer’s,” Mayeux says. These areas include the junction between neurons in the hippocampus, the area of the brain where Alzheimer’s begins, and the activity of other cells in the brain surrounding the neurons.

Other new genes uncovered by the group are related to processes in the brain that are well-known contributors to Alzheimer’s, including the processes that lead to the build-up of toxic amyloid beta and tau deposits, or help confirm newer ideas such as inflammation. The identification of new genes involved in these processes may ultimately lead to new drugs.

What’s most needed now, the investigators say, is an intense effort to understand the precise roles of all 22 genes in the development of Alzheimer’s disease.

“At the end of the day, we want to find a way to halt or prevent the disease,” Mayeux says.  “The prospects of doing this are now somewhat greater, but we still have a lot of work to do.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Way to Identify Brain Tumor Aggressiveness
Looking at a brain tumor’s epigenetic signature may help guide therapy.
Friday, January 29, 2016
Link Between Congenital Heart, Brain Disorders
Tools of precision medicine may lead to earlier identification and treatment of children with neurodevelopmental disorders.
Thursday, December 10, 2015
DNA Abnormalities Found in Children with Chronic Kidney Disease
Routine genetic screening of children with CKD could lead to earlier, more precise diagnoses.
Tuesday, April 21, 2015
Patient-Specific Stem Cells and Personalized Gene Therapy
Patients’ own cells transformed into model for studying disease and developing potential treatment.
Saturday, July 12, 2014
Test Could Identify Which Prostate Cancers Require Treatment
3-gene biomarker gauges tumor’s aggressiveness.
Thursday, September 12, 2013
Columbia Licenses Novel 3-D Organ and Tumor Segmentation Software to Varian Medical Systems
Allows for more precise and efficient planning and monitoring of cancer treatment.
Friday, May 17, 2013
Study Shows Why Leukemia Returns in Some Children
With sophisticated new DNA techniques, a team of researchers has found, for the first time, why many children with a type of leukemia suffer a relapse.
Thursday, February 28, 2013
Genes May Predict Response to Sole Sickle Cell Drug
Only one drug is currently available under FDA regulations, but response varies greatly from patient to patient.
Friday, February 22, 2013
Two Treatments for Retinitis Pigmentosa Move Closer to Clinical Trials
One treatment involves skin-derived induced pluripotent stem (iPS) cell grafts, the other gene therapy.
Friday, December 21, 2012
New Prenatal Gene Test Proposed as Standard of Care
Findings Published in NEJM show that microarray finds significantly more clinically relevant information than current method.
Thursday, December 06, 2012
Columbia Awarded One of First NCI “Provocative Questions” Grants
Timothy H. Bestor, PhD, an epigenetics researcher and professor of genetics and development at CUMC, was selected for his proposal, “Methylation Suicide in Cancer”.
Friday, September 21, 2012
DNA Repair: How Chromosomes Find Each Other
Study found that after a double-strand break in DNA, the mobility of both the broken segment and other, unbroken, chromosomes is greatly increased.
Wednesday, June 06, 2012
Scientific News
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Genetically Mapping the Most Lethal E.Coli Strains
New approach could lead to fewer deaths, and new treatments.
Pumpjack" Mechanism for Splitting and Copying DNA
High-resolution structural details of cells' DNA-replicating proteins offer new insight into how these molecular machines function
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
The Spice of Life
Scientists discover important genetic source of human diversity.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!