Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Novel Mutations Define Two Types of Bone Tumour

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Two related genes underlie the development of two rare bone tumours in nearly 100 per cent of patients.

Scientists have made a rare discovery that allows them to attribute two types of tumour almost entirely to specific mutations that lie in two related genes.

These mutations are found in nearly 100 per cent of patients suffering from two rare bone tumours; chondroblastoma and giant cell tumour of the bone.

Chondroblastoma and giant cell tumour of bone are benign bone tumours that primarily affect adolescents and young adults, respectively. They can be extremely debilitating tumours and recur despite surgery. Occasionally, these tumours can be difficult to differentiate from highly malignant bone cancers. The mutations found in this study may be used for diagnosis of chondroblastoma and giant cell tumour. In addition, the mutations offer a starting point into research for a specific treatment against these tumours.

"This is an exceptional, if not a once in a lifetime discovery for the team," says Dr Peter Campbell, co-lead author of the study from the Wellcome Trust Sanger Institute. "What we normally see is that the same mutations occur in many different types of tumour. These mutations, however, are highly specific to these tumours. Moreover, our findings suggest that these mutations are the key, if not the sole, driving force behind these tumours."

The team sequenced the full genomes of six chondroblastoma tumours and found that all six tumours had mutations in one of two related genes, H3F3A and H3F3B, which produce an identical protein, called histone 3.3.

Extending the study to more chondroblastoma tumours and to other bone tumours, they were able to verify that this mutation was found in almost all cases of chondroblastoma. Interestingly, the team also observed that most cases of a different type of bone tumour, giant cell tumour of bone, have a mutation in the H3F3A gene, albeit in a different position in the gene. A pattern emerged where both tumour types, chondroblastoma and giant cell tumour of bone, are defined by specific histone 3.3 mutations.

The team pinpointed the specificity of these mutations to affecting a single amino acid residue on the histone 3.3 protein; G34W amino acid residue underlies giant cell tumour of the bone and K36M amino acid residue underlies chondroblastoma.

"The high prevalence of these mutations in each tumour type is striking, but what's most remarkable is the unprecedented specificity of these mutations," says Dr Sam Behjati, first author from the Wellcome trust Sanger Institute. "The specificity of the mutations not only informs us about how these tumours develop, but also points to some fundamental function of these genes in normal bone development."

"Our findings will be highly beneficial to clinicians as we now have a diagnostic marker to differentiate chondroblastoma and giant cell tumour of bones from other bone tumours," says Professor Adrienne Flanagan, co-lead author from the Royal National Orthopaedic Hospital, and UCL Cancer Institute. "This study highlights the importance of continuing to sequence all types of human cancer."

"We are also extremely grateful to our patients and collaborators, without their help we would not have been able to study these extremely rare diseases," adds Professor Flanagan.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Normal Skin Accrues High Number of Mutations Associated with Cancer
Researchers used genomic sequencing to gain insights into how somatic mutations build up in normal cells before the onset of cancer, a process that is poorly understood.
Friday, May 22, 2015
Antibiotic Resistant Typhoid Detected in Countries Around the World
Unappreciated global spread of multiple antimicrobial resistant typhoid mapped by international consortium.
Wednesday, May 13, 2015
Genes that Cause Pancreatic Cancer Identified by New Tool
Screening system in mice spots cancerous changes invisible to sequencing.
Thursday, December 11, 2014
Atlas Shows How Genes Affect Our Metabolism
New atlas of molecules paves the way for improved understanding of metabolic diseases.
Tuesday, May 13, 2014
Gene Promotes one in a Hundred of Tumours
Gene discovered to play a part in one per cent of all cancers.
Wednesday, December 18, 2013
Genetic Variants Decrease Rate of Metabolism
Defects to gene reveal potential new therapeutic targets against obesity and type 2 diabetes.
Thursday, October 31, 2013
Tracking MRSA in Real Time
Study highlights benefits of rapid whole-genome sequencing.
Friday, June 15, 2012
Punctuated Evolution in Cancer Genomes
Remarkable new research overthrows the conventional view that cancer always develops in a steady, stepwise progression. It shows that in some cancers, the genome can be shattered into hundreds of fragments in a single cellular catastrophe, wreaking mutation on a massive scale.
Tuesday, January 11, 2011
1000 Genomes Project Publishes Analysis Of Completed Pilot Phase
NIH-supported work produces tool for research into genetic contributors to human disease.
Friday, October 29, 2010
Sequence is Scaffold to Study Sleeping Sickness
Study probes Trypanosoma parasite genome for cause of human infectivity.
Thursday, April 15, 2010
Exploring Genetic Effects in Cells
A deep look into population variation in gene activity provides key insight to cell functions and disease susceptibility, researcher report.
Thursday, March 11, 2010
Broken Genomes Behind Breast Cancers
Scientists characterized the ways in which the human genome is broken and put back together in 24 breast cancers.
Thursday, December 24, 2009
Blood Counts Are Clues to Human Disease
Genome-wide meta-analysis identifies 22 regions associated with blood cell traits.
Monday, October 12, 2009
Malaria Study Points the Way Forward For Genetic Studies of Disease in Africa
A study carried out by MalariaGEN provides new insights into how to conduct genetic studies of common diseases in genetically-diverse African populations.
Wednesday, May 27, 2009
Genome Study Takes Targeted Approach to Cancer
An £8.5 million UK-US alliance funded by the Wellcome Trust will test the sensitivity of 1000 cancer cell samples to hundreds of molecular anticancer treatments.
Wednesday, December 31, 2008
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!