Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Novel Mutations Define Two Types of Bone Tumour

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Two related genes underlie the development of two rare bone tumours in nearly 100 per cent of patients.

Scientists have made a rare discovery that allows them to attribute two types of tumour almost entirely to specific mutations that lie in two related genes.

These mutations are found in nearly 100 per cent of patients suffering from two rare bone tumours; chondroblastoma and giant cell tumour of the bone.

Chondroblastoma and giant cell tumour of bone are benign bone tumours that primarily affect adolescents and young adults, respectively. They can be extremely debilitating tumours and recur despite surgery. Occasionally, these tumours can be difficult to differentiate from highly malignant bone cancers. The mutations found in this study may be used for diagnosis of chondroblastoma and giant cell tumour. In addition, the mutations offer a starting point into research for a specific treatment against these tumours.

"This is an exceptional, if not a once in a lifetime discovery for the team," says Dr Peter Campbell, co-lead author of the study from the Wellcome Trust Sanger Institute. "What we normally see is that the same mutations occur in many different types of tumour. These mutations, however, are highly specific to these tumours. Moreover, our findings suggest that these mutations are the key, if not the sole, driving force behind these tumours."

The team sequenced the full genomes of six chondroblastoma tumours and found that all six tumours had mutations in one of two related genes, H3F3A and H3F3B, which produce an identical protein, called histone 3.3.

Extending the study to more chondroblastoma tumours and to other bone tumours, they were able to verify that this mutation was found in almost all cases of chondroblastoma. Interestingly, the team also observed that most cases of a different type of bone tumour, giant cell tumour of bone, have a mutation in the H3F3A gene, albeit in a different position in the gene. A pattern emerged where both tumour types, chondroblastoma and giant cell tumour of bone, are defined by specific histone 3.3 mutations.

The team pinpointed the specificity of these mutations to affecting a single amino acid residue on the histone 3.3 protein; G34W amino acid residue underlies giant cell tumour of the bone and K36M amino acid residue underlies chondroblastoma.

"The high prevalence of these mutations in each tumour type is striking, but what's most remarkable is the unprecedented specificity of these mutations," says Dr Sam Behjati, first author from the Wellcome trust Sanger Institute. "The specificity of the mutations not only informs us about how these tumours develop, but also points to some fundamental function of these genes in normal bone development."

"Our findings will be highly beneficial to clinicians as we now have a diagnostic marker to differentiate chondroblastoma and giant cell tumour of bones from other bone tumours," says Professor Adrienne Flanagan, co-lead author from the Royal National Orthopaedic Hospital, and UCL Cancer Institute. "This study highlights the importance of continuing to sequence all types of human cancer."

"We are also extremely grateful to our patients and collaborators, without their help we would not have been able to study these extremely rare diseases," adds Professor Flanagan.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Normal Skin Accrues High Number of Mutations Associated with Cancer
Researchers used genomic sequencing to gain insights into how somatic mutations build up in normal cells before the onset of cancer, a process that is poorly understood.
Friday, May 22, 2015
Antibiotic Resistant Typhoid Detected in Countries Around the World
Unappreciated global spread of multiple antimicrobial resistant typhoid mapped by international consortium.
Wednesday, May 13, 2015
Genes that Cause Pancreatic Cancer Identified by New Tool
Screening system in mice spots cancerous changes invisible to sequencing.
Thursday, December 11, 2014
Atlas Shows How Genes Affect Our Metabolism
New atlas of molecules paves the way for improved understanding of metabolic diseases.
Tuesday, May 13, 2014
Gene Promotes one in a Hundred of Tumours
Gene discovered to play a part in one per cent of all cancers.
Wednesday, December 18, 2013
Genetic Variants Decrease Rate of Metabolism
Defects to gene reveal potential new therapeutic targets against obesity and type 2 diabetes.
Thursday, October 31, 2013
Tracking MRSA in Real Time
Study highlights benefits of rapid whole-genome sequencing.
Friday, June 15, 2012
Punctuated Evolution in Cancer Genomes
Remarkable new research overthrows the conventional view that cancer always develops in a steady, stepwise progression. It shows that in some cancers, the genome can be shattered into hundreds of fragments in a single cellular catastrophe, wreaking mutation on a massive scale.
Tuesday, January 11, 2011
1000 Genomes Project Publishes Analysis Of Completed Pilot Phase
NIH-supported work produces tool for research into genetic contributors to human disease.
Friday, October 29, 2010
Sequence is Scaffold to Study Sleeping Sickness
Study probes Trypanosoma parasite genome for cause of human infectivity.
Thursday, April 15, 2010
Exploring Genetic Effects in Cells
A deep look into population variation in gene activity provides key insight to cell functions and disease susceptibility, researcher report.
Thursday, March 11, 2010
Broken Genomes Behind Breast Cancers
Scientists characterized the ways in which the human genome is broken and put back together in 24 breast cancers.
Thursday, December 24, 2009
Blood Counts Are Clues to Human Disease
Genome-wide meta-analysis identifies 22 regions associated with blood cell traits.
Monday, October 12, 2009
Malaria Study Points the Way Forward For Genetic Studies of Disease in Africa
A study carried out by MalariaGEN provides new insights into how to conduct genetic studies of common diseases in genetically-diverse African populations.
Wednesday, May 27, 2009
Genome Study Takes Targeted Approach to Cancer
An £8.5 million UK-US alliance funded by the Wellcome Trust will test the sensitivity of 1000 cancer cell samples to hundreds of molecular anticancer treatments.
Wednesday, December 31, 2008
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos