Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Variants Decrease Rate of Metabolism

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Defects to gene reveal potential new therapeutic targets against obesity and type 2 diabetes.

Researchers from the Wellcome Trust Sanger Institute and the University of Cambridge have found a novel genetic cause of severe obesity. Although relatively rare, this is the first time that scientists have seen genetic variants that reduce the body's ability to burn calories.

The team identified several rare variants on the gene KSR2. These mutations disrupt signaling of a biological pathway that, in turn, slows down metabolism. KSR2 gene could represent a new therapeutic target for the treatment of obesity and type 2 diabetes.

Changes in diet and levels of physical activity underlie the recent increase in obesity in the UK and worldwide, however there is a lot of variation in how much weight people gain. This variation between people is influenced by genetic factors and many of the genes involved act in the brain.

"For a long time, scientists and clinicians have speculated that some people may burn calories at a slower rate than others," says Dr Inês Barroso, co-lead author from the Wellcome Trust Sanger Institute. "Our findings provide the first evidence that defects in a particular gene, KSR2, may affect a person's metabolic rate and how their bodies process calories."

The team sequenced the DNA from more than 2,000 children with early-onset obesity and identified multiple mutations in the KSR2 gene. KSR2 belongs to a group of proteins called scaffolding proteins which play a critical role in ensuring that signals from hormones such as insulin are correctly processed by cells in the body to regulate how cells grow, divide and use energy.

They found that many of the mutations disrupt these cellular signals and reduce the ability of cells to use glucose and fatty acids. Patients who had the mutations in KSR2 had an increased drive to eat in childhood, but also a reduced metabolic rate, indicating that they have a reduced ability to use up all the energy that they consume.

"Up until now, the genes we have identified that control body weight have largely affected appetite," says Professor Farooqi, lead author from the University of Cambridge "However, KSR2 is different in that it also plays a role in regulating how energy is used in the body. In the future, modulation of KSR2 may represent a useful therapeutic strategy for obesity and type 2 diabetes."

The discovery of KSR2 variants contributing to obesity adds another level of understanding to the body's mechanisms for regulating weight. The team is continuing to study the genetic factors influencing obesity, findings which they hope to translate into beneficial therapies in the future.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Strongest Single Gene Conclusively Implicated in Schizophrenia
Research establishes for the first time that single-letter changes to the DNA code of one gene can have such a substantial effect on the risk of schizophrenia.
Monday, March 14, 2016
Normal Skin Accrues High Number of Mutations Associated with Cancer
Researchers used genomic sequencing to gain insights into how somatic mutations build up in normal cells before the onset of cancer, a process that is poorly understood.
Friday, May 22, 2015
Antibiotic Resistant Typhoid Detected in Countries Around the World
Unappreciated global spread of multiple antimicrobial resistant typhoid mapped by international consortium.
Wednesday, May 13, 2015
Genes that Cause Pancreatic Cancer Identified by New Tool
Screening system in mice spots cancerous changes invisible to sequencing.
Thursday, December 11, 2014
Atlas Shows How Genes Affect Our Metabolism
New atlas of molecules paves the way for improved understanding of metabolic diseases.
Tuesday, May 13, 2014
Gene Promotes one in a Hundred of Tumours
Gene discovered to play a part in one per cent of all cancers.
Wednesday, December 18, 2013
Novel Mutations Define Two Types of Bone Tumour
Two related genes underlie the development of two rare bone tumours in nearly 100 per cent of patients.
Thursday, October 31, 2013
Tracking MRSA in Real Time
Study highlights benefits of rapid whole-genome sequencing.
Friday, June 15, 2012
Punctuated Evolution in Cancer Genomes
Remarkable new research overthrows the conventional view that cancer always develops in a steady, stepwise progression. It shows that in some cancers, the genome can be shattered into hundreds of fragments in a single cellular catastrophe, wreaking mutation on a massive scale.
Tuesday, January 11, 2011
1000 Genomes Project Publishes Analysis Of Completed Pilot Phase
NIH-supported work produces tool for research into genetic contributors to human disease.
Friday, October 29, 2010
Sequence is Scaffold to Study Sleeping Sickness
Study probes Trypanosoma parasite genome for cause of human infectivity.
Thursday, April 15, 2010
Exploring Genetic Effects in Cells
A deep look into population variation in gene activity provides key insight to cell functions and disease susceptibility, researcher report.
Thursday, March 11, 2010
Broken Genomes Behind Breast Cancers
Scientists characterized the ways in which the human genome is broken and put back together in 24 breast cancers.
Thursday, December 24, 2009
Blood Counts Are Clues to Human Disease
Genome-wide meta-analysis identifies 22 regions associated with blood cell traits.
Monday, October 12, 2009
Malaria Study Points the Way Forward For Genetic Studies of Disease in Africa
A study carried out by MalariaGEN provides new insights into how to conduct genetic studies of common diseases in genetically-diverse African populations.
Wednesday, May 27, 2009
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Mothers Obesity Could be Passed on in mtDNA
Obesity can predispose offspring in multiple generations to metabolic problems.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Naked Mole Rat Exhibits “Extraordinary” Cancer Resistance
Scientists are getting closer to understanding the anti-cancer mechanism of the naked mole rat by making induced pluripotent stem cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!