Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Recode Organism’s Genome

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Researchers developed a method to engineer a bacterium’s genome to create new genetic codes.

The technique has the potential to turn microbes into efficient living factories that can make novel compounds.

The emerging field of synthetic biology seeks to redesign natural biological systems for new purposes. Living microbes have efficient mechanisms for quickly and reliably producing proteins, the building blocks of the cell. This ability has long been harnessed to produce large amounts of conventional proteins, such as insulin, for medical use.

When proteins are made, the genetic code contained in DNA is transcribed into a closely related molecule called RNA. The RNA then serves as a template to make a protein.

Each set of 3 DNA bases, called a codon, directs the cell’s machinery to add a specific amino acid to a growing protein chain. However, different codons can code for the same amino acid. For example, GCA, GCC, GCG, and GCT all direct different parts of the cell’s machinery to add the same amino acid, alanine. Similarly, UAG, UAA, and UGA are all RNA “stop” codons. Each recruits different machinery to stop the production of a protein once the amino acid chain is complete.

A team led by Dr. George Church of Harvard Medical School and Dr. Farren Isaacs of the Yale School of Medicine set out to recode the Escherichia coli genome to allow it to incorporate a synthetic non-standard amino acid (NSAA) into its protein structures. This approach would allow the bacteria to make new materials. The work was funded in part by NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of General Medical Sciences (NIGMS), and an NIH Director’s Early Independence Award. Results appeared in the October 18, 2013, issue of Science.

In this proof-of-concept study, the researchers repurposed the UAG stop codon. First, they switched all instances of UAG in the genome to another stop codon, UAA. This ensured that protein production would still end at the appropriate points and allow the cell to function normally. They then removed the stop machinery associated with UAG from the cell. Finally, they introduced genetically engineered components (aminoacyl–tRNA synthetase and tRNA) that reassigned UAG to direct the cell to incorporate NSAAs into amino acid chains.

To test the genomically recoded organism (GRO), the scientists included UAG codons in the sequence for a green fluorescent protein. They found that the GROs successfully incorporated NSAAs into the proteins.

Removing the stop machinery associated with UAG codons didn’t impair the GRO's ability to reproduce. The GROs also showed increased resistance to a type of virus that infects bacteria. It’s possible that new genetic codes may protect cells by causing errors when viral proteins are translated.

The creation of a GRO raises the possibility that researchers might be able to retool nature and create new forms of proteins. In an accompanying study, the Harvard group showed that the approach may be feasible for several other codons in the genome as well.

“Since the genetic code is universal, it raises the prospect of recoding genomes of other organisms,” Isaacs says. “This has tremendous implications in the biotechnology industry and could open entirely new avenues of research and applications.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Cancer Related Immune Response Genes Uncovered
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!