Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Recode Organism’s Genome

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Researchers developed a method to engineer a bacterium’s genome to create new genetic codes.

The technique has the potential to turn microbes into efficient living factories that can make novel compounds.

The emerging field of synthetic biology seeks to redesign natural biological systems for new purposes. Living microbes have efficient mechanisms for quickly and reliably producing proteins, the building blocks of the cell. This ability has long been harnessed to produce large amounts of conventional proteins, such as insulin, for medical use.

When proteins are made, the genetic code contained in DNA is transcribed into a closely related molecule called RNA. The RNA then serves as a template to make a protein.

Each set of 3 DNA bases, called a codon, directs the cell’s machinery to add a specific amino acid to a growing protein chain. However, different codons can code for the same amino acid. For example, GCA, GCC, GCG, and GCT all direct different parts of the cell’s machinery to add the same amino acid, alanine. Similarly, UAG, UAA, and UGA are all RNA “stop” codons. Each recruits different machinery to stop the production of a protein once the amino acid chain is complete.

A team led by Dr. George Church of Harvard Medical School and Dr. Farren Isaacs of the Yale School of Medicine set out to recode the Escherichia coli genome to allow it to incorporate a synthetic non-standard amino acid (NSAA) into its protein structures. This approach would allow the bacteria to make new materials. The work was funded in part by NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of General Medical Sciences (NIGMS), and an NIH Director’s Early Independence Award. Results appeared in the October 18, 2013, issue of Science.

In this proof-of-concept study, the researchers repurposed the UAG stop codon. First, they switched all instances of UAG in the genome to another stop codon, UAA. This ensured that protein production would still end at the appropriate points and allow the cell to function normally. They then removed the stop machinery associated with UAG from the cell. Finally, they introduced genetically engineered components (aminoacyl–tRNA synthetase and tRNA) that reassigned UAG to direct the cell to incorporate NSAAs into amino acid chains.

To test the genomically recoded organism (GRO), the scientists included UAG codons in the sequence for a green fluorescent protein. They found that the GROs successfully incorporated NSAAs into the proteins.

Removing the stop machinery associated with UAG codons didn’t impair the GRO's ability to reproduce. The GROs also showed increased resistance to a type of virus that infects bacteria. It’s possible that new genetic codes may protect cells by causing errors when viral proteins are translated.

The creation of a GRO raises the possibility that researchers might be able to retool nature and create new forms of proteins. In an accompanying study, the Harvard group showed that the approach may be feasible for several other codons in the genome as well.

“Since the genetic code is universal, it raises the prospect of recoding genomes of other organisms,” Isaacs says. “This has tremendous implications in the biotechnology industry and could open entirely new avenues of research and applications.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Depression Genetics Insight from Crowd-Sourced Data
Genome sites liked to depression have been discovered from data shared by people who had purchased their genetic profiles online.
Tuesday, August 02, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Scientific News
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Epigenetic Clock Predicts Life Expectancy
New research finds 5 percent of population ages faster, faces shorter lifespan.
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
Death-or-Repair Switch Protein Identified
Researchers have identified a protein that plays a key role in the decision process of cell damage repair or cellular suicide.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!