Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists at the London Research Institute of CRUK Use the Linkam CMS196

Published: Thursday, November 07, 2013
Last Updated: Thursday, November 07, 2013
Bookmark and Share
Scientists use CMS196 stage for the imaging of mammalian cells with Cryo-CLXM microscopy.

Linkam Scientific Instruments has reported on the use of their innovative CMS196 cryo stage for the study of mammalian cells at the London Research Institute, Cancer Research UK.

For mammalian cells to remain in a healthy state, they require constant renewal of their components. The process of disposing of old components is known as 'autophagy', which stems from the Greek words auto "self" and phagein "eat".

This process involves the formation of a double-membrane structure called an autophagosome, which engulfs old or dysfunctional organelles and then fuses with lysosomes, where they are broken down to recycle the constituent molecules.

Autophagy is increased when cells are starved, and plays a fundamental role in a large number of cellular processes, including development, immunity, neurodegeneration and cancer.

In a recent publication in the journal, Ultramicroscopy (Duke et al., 2013), Dr Lucy Collinson (LRI Electron Microscopy Unit), in collaboration with Dr Sharon Tooze (LRI Secretory Pathways Lab), imaged forming autophagosomes in whole mammalian cells.

The structures are particularly difficult to capture in cells prepared for electron microscopy, so they are now using a powerful new technique called cryo-soft X-ray tomography, cryo-SXT, working with Dr Liz Duke at the Diamond Light Source synchrotron.

This allows whole mammalian cells to be imaged as close to the living state as possible. The cells are grown on tiny gold grids and plunged into liquid ethane to preserve the cells in the frozen state.

In order to find the autophagosomes within the cells, they are labelled with green fluorescent protein (GFP). The fluorescent autophagosomes are then located using a technique called correlative cryo-fluorescence and cryo-soft x-ray microscopy (cryo-CLXM).

Cryo-fluorescence microscopy is performed using the Linkam CMS196 stage prior to the cells being transported in cryo-containers to synchrotrons in Oxfordshire, Berlin and Barcelona for imaging. One of the major advantages of this new correlative approach is that the CMS196 stage allows the cells to be screened for quality and protein localization in the research laboratory before actually travelling to the synchrotron, which is critical in terms of cost and efficiency.

The combination of cryo-fluorescence microscopy and cryo-SXT allows scientists to link the functionality of proteins to their near native-state structure. This should find wide applications in cell biology studies of health and disease.

The Linkam CMS196 stage was designed specifically to solve the problem of how to get vitrified EM grids from the fluorescence microscope into the cryo-TEM without devitrification and contamination through condensation. The stage has been optimized optically to enable the use of high NA lenses.

Up to 3 grids can be loaded into a specially designed cassette for transportation from the plunge freezer to the upright fluorescent microscope. The cassette is then easily loaded onto the viewing bridge using special manipulation tools.

The sample viewing chamber is perfectly dry and below -180ºC while the sample bridge itself is at -196°C. The grids can be quickly and efficiently scanned using a 100X 0.75NA lens and manipulated using high precision micrometers. The cassette is then simply manipulated back into the transportation device and is then transported to the cryo-TEM under liquid nitrogen.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos