Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Fountain-of-Youth Gene Repairs Tissue Damage in Adults

Published: Monday, November 11, 2013
Last Updated: Monday, November 11, 2013
Bookmark and Share
Young animals recover from tissue damage better than adults, and from Charles Darwin's time until now, scientists have puzzled over why this is the case.

A study published by Cell Press November 7th in the journal Cell has revealed that an evolutionarily conserved gene called Lin28a, which is very active in embryos but not in adults, enhances tissue repair after injury when reactivated in adult mice. The findings open up new avenues for the treatment of injuries and degenerative diseases in adult humans.

"It sounds like science fiction, but Lin28a could be part of a healing cocktail that gives adults the superior tissue repair seen in juvenile animals," says senior study author George Daley of Boston Children's Hospital and Harvard Medical School.

Tissue repair is more robust in juveniles than in adults throughout the evolutionary spectrum of organisms, from insects and amphibians to fish and mammals. The molecular causes of this phenomenon have been elusive, but Daley and his collaborators speculated that the Lin28a protein could play a role because it regulates growth and development in juveniles, but its levels decline with age.

To test whether this protein might influence tissue repair in adults, Daley and his team reactivated the Lin28a gene in adult mice. Lin28a enhanced hair regrowth in these mice after they were shaved, and promoted tissue repair in their ears and digits after injury. The protein also stimulated cell proliferation and migration, which are critical for tissue repair. Lin28a achieved all of these effects by increasing the production of several metabolic enzymes and enhancing metabolic processes that are normally more active in embryos.

"We were surprised that what was previously believed to be a mundane cellular 'housekeeping' function would be so important for tissue repair," says study author Shyh-Chang Ng of Harvard Medical School. "One of our experiments showed that bypassing Lin28a and directly activating mitochondrial metabolism with a small-molecule compound also had the effect of enhancing wound healing, suggesting that it could be possible to use drugs to promote tissue repair in humans."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Genome-Forward Approach to Tackling Drug-Resistant Cancers
If you really want to understand why a particular human cancer resists treatment, you have to be able to study that tumor in a way that just isn't possible in humans.
Thursday, September 26, 2013
Scientific News
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos