Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First Director Named for NHGRI’S New Division of Genomics and Society

Published: Friday, November 15, 2013
Last Updated: Friday, November 15, 2013
Bookmark and Share
Lawrence Brody, Ph.D. selected to lead new division that includes ELSI research program.

Lawrence C. Brody, Ph.D. has been selected to be the first director of the newly established Division of Genomics and Society at the National Human Genome Research Institute (NHGRI).

Dr. Brody is currently chief of the Genome Technology Branch within NHGRI’s intramural research program, and the chief scientific officer of the trans-NIH Center for Inherited Disease Research. NHGRI is one of the 27 institutes and centers that make up the National Institutes of Health.

Dr. Brody’s expertise and interests are wide-ranging, from human genetics and genomics to the public understanding of science. As a bench scientist, he played an instrumental role in early and important discoveries about the BRCA1 gene, which is responsible for a hereditary form of breast cancer.

His research efforts have regularly included studying the practical implications of genomic advances. For example, Dr. Brody was a co-architect of the NHGRI Multiplex Initiative, an innovative project that aimed to better understand how the general public comprehends and reacts to personal genetic testing results.

Dr. Brody has also invested a considerable amount of his professional efforts to addressing the broader societal issues relevant to contemporary genomics research. He has worked on several projects related to genomics, society, and minority populations and, most recently, he served as a key developer of the public exhibition, Genome: Unlocking Life’s Code, which opened in June at the Smithsonian Institution’s National Museum of Natural History.

Moreover, on multiple occasions, he worked closely with the U.S. Solicitor General in the drafting and editing of legal briefs and in the preparation of oral arguments for the gene patenting case that went before the U.S. Supreme Court earlier this year.

“Dr. Brody brings an extraordinary and diverse body of accomplishments and expertise to lead this newly created division,” said NHGRI Director Eric D. Green, M.D., Ph.D. “His perspective as a bench scientist combined with a demonstrated long-term interest in the intersection of science and society makes him uniquely qualified to lead this critical part of NHGRI’s research program.”

The Division of Genomics and Society was established in 2012 as part of an institute-wide reorganization. It is one of four divisions that make up the institute’s extramural research program.

This new division is now responsible for an expanded program related to the many societal issues relevant to genomics research and genomic advances, incorporating and extending the activities of NHGRI’s Ethical, Legal and Social Implications (ELSI) research program.

The latter was established in 1990 as part of the Human Genome Project and aims to pursue multidisciplinary research and training designed to explore the impact of genomics on society.

“It is an exciting time for genetics and genomics, but with that comes the responsibility to examine and address the many important societal implications of these research advances. With improvements in technology as the driving force, genomics can increasingly be used in clinical settings in a way that was simply not possible a decade ago,” Dr. Brody said. “Because genomics is moving closer to our daily lives, we need to better understand its societal impact. Issues such as consent, privacy, and access to genomic information will continue to grow in importance. We need to increasingly pursue research to understand these issues and to engage relevant stakeholders, including the general public, in the discussions.”

Several large NHGRI programs incorporate elements of ELSI research into their studies, including the Clinical Sequencing Exploratory Research program, the Implementing Genomics into Clinical Practice Network, and the Genomic Sequencing and Newborn Screening Disorders program.

Dr. Brody would like to eventually see similar ELSI research programs be implemented by other institutes and centers across NIH. He also sees several related areas for potential research focus, including exploring a legal framework for genetic/genomic testing and examining how advances in genomic technologies affect the economics of medical practice.

Dr. Brody received a B.S. in biology from the Pennsylvania State University, University Park, in 1982, and a Ph.D. in human genetics from Johns Hopkins University, Baltimore, in 1991. He was a Howard Hughes Medical Institute (HHMI) Research Associate from 1990 to 1993 and an HHMI postdoctoral fellow at Johns Hopkins University and the University of Michigan, Ann Arbor, during that time.

He joined NHGRI in 1993 as a senior staff fellow, and became senior investigator and head of the Molecular Pathogenesis Section in the Genome Technology Branch in 2001. Dr. Brody has been chief of that branch since 2010, and the chief scientific officer at the trans-NIH Center for Inherited Disease Research since 2006.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Scientists Adopt New Strategy to Find Huntington’s Disease Therapies
Large, international NIH-supported study uses precision medicine to tackle neurological disorders.
Tuesday, August 11, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!