Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nanotech Method Show Promise Against Pancreatic Cancer

Published: Monday, November 18, 2013
Last Updated: Monday, November 18, 2013
Bookmark and Share
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.

Method uses two different types of nanoparticles, the first type clearing a path into tumor cells for the second, which delivers chemotherapy drugs.

The research team, led by Dr. Andre Nel, a UCLA professor of nanomedicine and a member of the California NanoSystems Institute at UCLA, and Dr. Huan Meng, a UCLA adjunct assistant professor of nanomedicine, has shown that this new drug-delivery technique is effective in treating pancreatic cancer in a mouse model.

Pancreatic ductal adenocarcinoma, or pancreatic cancer, is a deadly disease that is nearly impossible to detect until it is in the advanced stage. Treatment options are limited and have low success rates. The need for innovative and improved treatment of pancreatic cancer cannot be overstated, the researchers said, as a pancreatic cancer diagnosis has often been synonymous with a death sentence.

Pancreatic ductal adenocarcinoma tumors are made up of cancer cells that are surrounded by other structural elements called stroma. The stroma can be made of many substances, including connective tissue and pericyte cells, which block standard chemotherapy drugs in tumor blood vessels from efficiently reaching the cancer cells, reducing the effectiveness of treatment.
The dual-wave nanotherapy method employed by Nel and Meng uses two different kinds of nanoparticles injected intravenously in a rapid succession. The first wave of nanoparticles carries a substance that removes the pericytes' vascular gates, opening up access to the pancreatic cancer cells; the second wave carries the chemotherapy drug that kills the cancer cells.

Nel and Meng, along with colleagues Dr. Jeffrey Zink, a UCLA professor of chemistry and biochemistry, and Dr. Jeffrey Brinker, a University of New Mexico professor of chemical and nuclear engineering, sought to place chemotherapy drugs into nanoparticles that could more directly target pancreatic cancer cells, but they first needed to find a way to get those nanoparticles through the sites of vascular obstruction caused by pericytes, which restrict access to the cancer cells.

Through experimentation, they discovered they could interfere with a cellular signaling pathway — the communication mechanism between cells — that governs the pericytes' attraction to the tumor blood vessels. By creating nanoparticles that effectively bind a high load of the signaling pathway inhibitor, the researchers were able to develop a first wave of nanoparticles that would separate the pericytes from the endothelial cells on the blood vessel. This would open the vascular gate for the next wave of nanoparticles, which carry the chemotherapeutic agent to the cancer cells inside the tumor.

To test this nanotherapy, the researchers used immuno-compromised mice in which they grew human pancreatic tumors called xenografts under the skin. With the two-wave method, the xenograft tumors had a significantly higher rate of shrinkage than tumors exposed only to chemotherapy given as a free drug or carried in nanoparticles without first-wave treatment.

"This two-wave nanotherapy is an existing example of how we seek to improve the delivery of chemotherapy drugs to their intended targets using nanotechnology to provide an engineered approach," said Nel, chief of UCLA's division of nanomedicine. "It shows how the physical and chemical principles of nanotechnology can be integrated with the biological sciences to help cancer patients by increasing the effectiveness of chemotherapy while also reducing side effects and toxicity. This two-wave treatment approach can also address biological impediments in nanotherapies for other types of cancer."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Monday, October 24, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Cracking the Code of a Deadly Virus
Researchers have exploited weaknesses in VEEV's genetic code, creating a far less deadly variant.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!