Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Pinpoint Cell Type and Brain Region Affected by Gene Mutations in Autism

Published: Tuesday, November 26, 2013
Last Updated: Tuesday, November 26, 2013
Bookmark and Share
UCSF-led study zeroes in on when and where disrupted genes exert effects.

A team led by UC San Francisco (UCSF) scientists has identified the disruption of a single type of cell – in a particular brain region and at a particular time in brain development – as a significant factor in the emergence of autism.

The finding, reported in the Nov. 21 issue of Cell, was made with techniques developed only within the last few years and marks a turning point in autism spectrum disorders (ASDs) research.

Large-scale gene-sequencing projects are revealing hundreds of autism-associated genes. Scientists have begun to leverage new methods to decipher how mutations in these disparate genes might converge to exert their effects in the developing brain.

The new research focused on just nine genes, those most strongly associated with autism in recent sequencing studies, and investigated their effects using precise maps of gene expression during human brain development.

Led by Jeremy Willsey, a graduate student in the laboratory of senior author Matthew W. State, MD, PhD, of UCSF, the group showed that this set of genes contributes to abnormalities in brain cells known as cortical projection neurons in the deepest layers of the developing prefrontal cortex, during the middle period of fetal development.

Though a range of developmental scenarios in multiple brain regions is surely at work in ASDs, the researchers said the ability to place these specific genetic mutations in one specific set of cells – among hundreds of cell types in the brain, and at a specific point in human development – is a critical step in beginning to understand how autism comes about.

“Given the small subset of autism genes we studied, I had no expectation that we would see the degree of spatiotemporal convergence that we saw,” said State, an international authority on the genetics of neurodevelopmental disorders.

“This strongly suggests that, though there are hundreds of autism risk genes, the number of underlying biological mechanisms will be far fewer," he said. "This is a very important clue to advance precision medicine for autism toward the development of personalized and targeted therapies.”

Complex Genetic Architecture of ASDs

ASDs, which are marked by deficits in social interaction and language development, as well as by repetitive behaviors and/or restricted interests, are known to have a strong genetic component.

But these disorders are exceedingly complex, with considerable variation in symptoms and severity, and little consistency in the mutations among affected individuals.

Instead, with the rise of new sequencing methods over the past several years, researchers have identified many rare, non-inherited, spontaneous mutations that appear to act in combination with other genetic and non-genetic factors to cause ASDs. According to some estimates, mutations in as many as 1,000 genes could play a role in the development of these disorders.

While researchers have been heartened that specific genes are now rapidly being tied to ASDs, State said the complex genetic architecture of ASDs is also proving to be challenging.

“If there are 1,000 genes in the population that can contribute to risk in varying degrees and each has multiple developmental functions, it is not immediately obvious how to move forward to determine what is specifically related to autism," State said. "Without this, it is very difficult to think about how to develop new and better medications,” he said.

Focusing on Nine Genes

To begin to grapple with those questions, the researchers involved in the new study first selected as “seeds” the nine genes that have been most strongly tied to ASDs in recent sequencing research from their labs and others.

Importantly, these nine genes were chosen solely because of the statistical evidence for a relationship to ASDs, not because their function was known to fit a theory of the cause of ASDs. “We asked where the leads take us, without any preconceived idea about where they should take us,” said State.

The team then took advantage of BrainSpan, a digital atlas assembled by a large research consortium, including co-author Nenad Šestan, MD, PhD, and colleagues at Yale School of Medicine. Based on donated brain specimens, BrainSpan documents how and where genes are expressed in the human brain over the lifespan.

The scientists, who also included Bernie Devlin, PhD, of The University of Pittsburgh School of Medicine; Kathryn Roeder, PhD, of Carnegie-Mellon University; and James Noonan, PhD, of Yale School of Medicine, used this tool to investigate when and where the nine seed genes join up with other genes in “co-expression networks” to wire up the brain or maintain its function.

The resulting co-expression networks were then tested using a variety of pre-determined criteria to see whether they showed additional evidence of being related to ASDs. Once this link was established, the authors were then able to home in on where in the brain and when in development these networks were localizing. This proved to be in cortical projection neurons found in layers 5 and 6 of the prefrontal cortex, and during a time period spanning 10 to 24 weeks after conception. Notably, a study using different methods and published in the same issue of Cell also implicates cortical projection neurons in ASDs.

“To see these gene networks as highly connected as they are, as convergent as they are, is quite amazing,” said Willsey “An important outcome of this study is that, for the first time, it gives us the ability to design targeted experiments based on a strong idea about when and where in the brain we should be looking at specific genes with specific mutations.”

In addition to its importance in ASD research, State sees the new work as a reflection of the tremendous value of “big science” efforts, such as large-scale collaborative genomic studies and the creation of foundational resources such as the BrainSpan atlas.

“We couldn’t have done this even two years ago,” State said, “because we didn’t have the key ingredients: a set of unbiased autism genes that we have confidence in, and a map of the landscape of the developing human brain. This work combines large-scale ‘-omics’ data sets to pivot into a deeper understanding of the relationship between complex genetics and biology.”

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children’s Hospital.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Fast-Mutating DNA Sequences Shape Early Development
What does it mean to be human? According to scientists the key lies, ultimately, in the billions of lines of genetic code that comprise the human genome.
Wednesday, November 13, 2013
Did Inefficient Cellular Machinery Evolve to Fight Viruses and Jumping Genes?
UCSF scientist poses new theory on origins of eukaryotic gene expression.
Monday, November 11, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
New Insights into How Proteins Regulate Genes
Researchers have developed a new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off.
Monday, October 21, 2013
Cell Growth Discovery Has Implications for Targeting Cancer
The way cells divide to form new cells is controlled in previously unsuspected ways.
Monday, October 21, 2013
Scientific News
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos