Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Mutation Could Increase Understanding of ADHD

Published: Wednesday, November 27, 2013
Last Updated: Wednesday, November 27, 2013
Bookmark and Share
Absence of normal gene that expresses a protein involved in nerve cell communication results in seizures and hyperactivity.

Scientists at Trinity College Dublin have discovered that a mutation in a single gene involved in the functioning of the brain’s nervous system can lead to hyperactivity symptoms that are characteristic of Attention-Deficit Hyperactivity Disorder (ADHD).

Getting the nervous system wired up properly is a big job. The brain contains billions of different types of nerve cells, which all have to be connected in a very precise fashion. This circuitry self-assembles as an embryo grows, based on a developmental programme involving the actions of thousands of different genes.

The scientists discovered that a mutation in a single mouse gene, ‘Elfn1’, can have a big effect. Their new findings give impetus to discover whether mutations in Elfn1 in humans can give rise to similar symptoms and whether they might play a part in some patients with epilepsy and ADHD. These two conditions occur together far more often than expected by chance.

In an article just published in the international journal, PLOS ONE, Associate Professor in Genetics at Trinity, Kevin Mitchell, and Research Technical Officer, Dr Jackie Dolan, investigated the importance of the function played by Elfn1 and the protein it produces when expressed. They did this by experimentally removing it from some mice and comparing the effects against those seen in mice with the normal gene.

Although overall brain anatomy and patterns of connectivity remained normal, there was clear evidence of disturbance in brain function in individuals without Elfn1. Seizures occurred in some, and these became more common over time and were easily triggered by human interaction. Secondly, hyperactivity was observed, and this showed an unusual response to the stimulant, amphetamine.

Amphetamine normally causes hyperactivity in animals that have Elfn1 present, as it does in most humans. Here, it reduced the hyperactivity of the mice without the gene. This is similar to the situation in patients with ADHD, where amphetamine and related drugs have a paradoxical, calming effect. “These findings clearly show that removal of the Elfn1 gene affects brain circuits with multiple consequences for behaviour,” said Dr Dolan.

The seizures likely relate to the function of Elfn1 in dampening the response of the nervous system to strong stimuli in key brain structures called the cortex and hippocampus. However, the development of ADHD-like hyperactivity focused on a different brain structure, known as the habenula. This structure is part of a system that integrates information from multiple regions of the brain and regulates the activity of nerve cells that produce mood-regulating chemicals such as dopamine and serotonin.

Professor Mitchell said: “We are at the beginning of this process of figuring out how this gene works and understanding the consequences when it is mutated. But, these animals provide a unique model to investigate how subtle changes in brain development can ultimately result in aberrant brain function”.

Elfn1 was first discovered by Dr Dolan, Professor Mitchell and colleagues in 2007. The protein it produces when expressed allows communication from one nerve cell to another. In a study published in Science last year, Emily Sylwestrak and Anirvan Ghosh, of the University of California, San Diego, showed that the Elfn1 protein determined what kind of connection was made onto those nerve cells.

The new research, which was funded by Science Foundation Ireland, is available below. 


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Discover Genetic Basis for Memory Formation with Implications for Neurological Diseases
Two genes linked to simple memory formation also regulate appropriate nerve responses that are lacking in related disease sufferers.
Monday, December 23, 2013
International Research Project Identifies a New Genetic Mutation that Helps Explain the Development of Eczema
Scientists have identified a new genetic mutation linked to the development of a type of eczema known as atopic dermatitis (AD).
Monday, November 04, 2013
New Genetic Mutation Helps Explain Development of Eczema
Researchers found that a mutation in the gene Matt/Tmem79 led to the development of spontaneous dermatitis in mice.
Monday, November 04, 2013
Scientists Propose a Molecular Explanation for Degenerative Disease
An international collaboration has shed new light on the origins and molecular causes of age related degenerative conditions including Motor Neurone Disease (MND).
Monday, August 19, 2013
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!