Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Releasing the Untapped Biotech Potential of the Sea

Published: Friday, November 29, 2013
Last Updated: Friday, November 29, 2013
Bookmark and Share
Exploitation of marine microorganisms has been hampered by the difficulty and expense of isolating their valuable novel chemicals and molecules.

While marine microorganisms have long been identified as an untapped resource of biotechnological potential, the vast majority have until now not been properly cultivated. 

This is a wasted opportunity, and is something that the EU-funded Marine Microorganisms: Cultivation Methods for improving their Biotechnological Applications (MaCuMBA) project aims to rectify. Launched in August 2012, this four-year initiative will improve the isolation rate of marine microorganisms by using innovative new methods. 

These methods include the co-cultivation of interdependent microorganisms that mimic the natural environment. Signalling molecules produced by microorganisms will help to stimulate growth of the same or other species. In fact, these signalling molecules represent an interesting and potentially marketable product in themselves. 

The project consortium took opportunity to take stock of the progress made so far during its first General Assembly, held in Rostock, France in September. "The work carried out by the MaCuMBA project will increase the time and effort invested in getting new microbes in pure culture," says Professor Francisco Rodriguez-Valera, leader of MaCuMBA's Work Package 6 on sequencing, genomic and metagenomic libraries and meta genome analyses. 

"This kind of research is restricted by the high risk that it implies, in spite of the high gain that it provides once significant new microbes are obtained as pure cultures, so projects such as MaCuMBA are important." 

Work Package 6 uses genomics and meta-genomics in order to obtain pure cultures of individual marine microbes and to increase our understanding of their biology. "Sequencing nucleic acids is the fastest and highest yield method presently available for acquiring information about microbes," says Professor Rodriguez-Valera. "We will use these technologies to advance our knowledge of the main microbial characters that play a role in the functions of the ocean ecosystem. Learning how to use these organisms will help us to improve the sustainability of both the ocean ecosystem and the European economy through biotechnological processes." 

In sum, the project will increase the success rate in isolating marine microbes and numerous novel marine bacteria, improve cultivation efficiency of biotechnological relevant marine microorganisms and increase the production rate of new biomolecules with high added value. MaCuMBA also aims to develop culturing methods that mimic natural conditions and advance our understanding of how cell-to-cell communication could affect the isolation and cultivation efficiency of marine microorganisms. 

The MaCuMBA project is being led by the Royal Netherlands Institute for Sea Research (NIOZ), and is a joint venture of 23 partner institutions from 11 EU countries. All partners share the common aim of uncovering the untold diversity of marine microbes using cultivation-dependent strategies. 

The project is scheduled to run until July 2016.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Genetically Mapping the Most Lethal E.Coli Strains
New approach could lead to fewer deaths, and new treatments.
Pumpjack" Mechanism for Splitting and Copying DNA
High-resolution structural details of cells' DNA-replicating proteins offer new insight into how these molecular machines function
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
The Spice of Life
Scientists discover important genetic source of human diversity.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!