Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Two Copies of Mutant Gene May Trigger Rare Adrenal Disorder

Published: Friday, November 29, 2013
Last Updated: Friday, November 29, 2013
Bookmark and Share
Mutation found by NIH, French team may allow for early identification of patients.

Many cases of a rare disorder of the adrenal glands appear to result from two copies of a mutant gene, according to a research team made up of scientists in France and at the U.S. National Institutes of Health.

The adrenal disorder, Corticotropin-independent macronodular adrenal hyperplasia, results in the formation of numerous tumors in the adrenal glands located on top of the kidneys, and which produce hormones that help the body respond to stress. The condition is one of many causes of Cushing’s syndrome, a group of symptoms resulting from an excess of cortisol, a stress hormone. Untreated, Cushing syndrome can result in high blood pressure, heart disease, bone loss, diabetes, and other health problems.

The researchers found that about a third of a group of patients with corticotropin-independent macronodular adrenal hyperplasia had mutations in both copies of a gene, designated ARMC5. This gene is thought to play a role in preventing tumors from forming. One copy of the gene occurred in all the patients’ cells, and the second copy was found only in the cells of the patients’ adrenal tumors.

Single copies of the mutant AMRC5 gene were also found in some of the family members of patients who took part in the study. Most of the family members with only one copy of the mutant gene had not developed corticotropin-independent macronodular adrenal hyperplasia and did not have Cushing’s syndrome.

Based on these observations, the researchers believe that it’s necessary to have two copies of the mutant gene to develop corticotropin-independent macronodular adrenal hyperplasia. The first mutation likely arises before birth, and occurs in all the cells of the body. Presumably, the second mutation arises sometime later in life, in the cells of the adrenal gland. The tumors then develop in the adrenal glands after the second mutation has occurred. The researchers are unsure why the second mutation develops, and why the tumors appear in the adrenal glands and not in some other part of the body.

“Because they often don’t cause any obvious symptoms, adrenal tumors may go undiagnosed for many years,” explained study co-author Constantine A. Stratakis, M.D., of the Division of Intramural Research at the Eunice Kennedy ShriverNational Institute of Child Health and Human Development (NICHD). “If we could screen family members for the ARMC5gene, we could monitor their cortisol levels and treat them after the first sign of Cushing’s syndrome, and avoid the long-term consequences of the disorder.”

The study’s first author was Guillaume Assie, M.D., Ph.D. Along with NICHD’s Stratakis, the study also included senior author Jerome Bertherat, M.D., of the Cochin Institute, in Paris, and scientists at other French research institutions.

The study findings appear in the New England Journal of Medicine.

“Apparently, quite a few individuals with the single mutation do not go on to develop tumors,” Dr. Bertherat said. “Now that we have discovered this connection with ARMC5, we would like to investigate what happens to allow the secondary mutations in adrenal tissue that precede the development of tumors.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Wednesday, December 07, 2016
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Wednesday, December 07, 2016
Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Wednesday, October 26, 2016
NIH Scientists Uncover Genetic Explanation for Frustrating Syndrome
Researchers at NIH have suggested that the multiple alpha tryptase gene copies might underlie health issues that affect a substantial number of people.
Tuesday, October 18, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Unexpected Role for Epigenetic Enzymes in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!