Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Deposits First Batch of Genomic Data for Alzheimer’s Disease

Published: Monday, December 02, 2013
Last Updated: Monday, December 02, 2013
Bookmark and Share
Researchers can now freely access the first batch of genome sequence data from the Alzheimer’s Disease Sequencing Project (ADSP).

The ADSP is one of the first projects undertaken under an intensified national program of research to prevent or effectively treat Alzheimer’s disease.

The first data release includes data from 410 individuals in 89 families. Researchers deposited completed WGS data on 61 families and have deposited WGS data on parts of the remaining 28 families, which will be completed soon.  WGS determines the order of all 3 billion letters in an individual’s genome.  Researchers can access the sequence data at dbGaP <http://www.ncbi.nlm.nih.gov/gap> or the National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS), <https://www.niagads.org/>.

“Providing raw DNA sequence data to a wide range of researchers proves a powerful crowd-sourced way to find genomic changes that put us at increased risk for this devastating disease,” said NIH Director, Francis S. Collins, M.D., Ph.D., who announced the start of the project in February 2012. “The ADSP is designed to identify genetic risks for late-onset of Alzheimer’s disease, but it could also discover versions of genes that protect us. These insights could lead to a new era in prevention and treatment. ”

As many as 5 million Americans 65 and older are estimated to have Alzheimer’s disease, and that number is expected to grow significantly with the aging of the baby boom generation. The National Alzheimer’s Project Act became law in 2011 in recognition of the need to do more to combat the disease. The law called for upgrading research efforts by the public and private sectors, as well as expanding access to and improving clinical and long term care.   One of the first actions taken by NIH under Alzheimer’s Act was the allocation of additional funding in fiscal 2012 for a series of studies, including this genome sequencing effort. Today’s announcement marks the first data release from that project.

Genome sequencing –- determining the order of chemical letters in a cell’s DNA -- is considered a key strategy to identifying new clues to the fundamental cause of Alzheimer’s disease and the development of new diagnostics and treatments. The clues come from differences in the order of DNA letters in Alzheimer’s patients compared to control groups.

To carry out the ADSP, two NIH institutes –- the National Human Genome Research Institute (NHGRI) and the National Institute on Aging (NIA) -- formed a collaboration to manage patient samples and genome sequencing.  NHGRI has devoted $25 million in sequencing capacity at its three flagship centers:  The Genome Institute at the Washington University School of Medicine in St. Louis; the Human Genome Sequencing Center at the Baylor College of Medicine in Houston; and the Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, MA.

“NHGRI’s expertise in managing large sequencing initiatives is a hugely important addition to the search for the genetic roots of late onset Alzheimer’s disease,” said NIA Director Richard J. Hodes, MD. “Partnerships between NIH institutes, like this one between NIA and NHGRI, have proved a powerful strategy for focusing research resources on critical public health problems.”

The sequencing centers will produce whole genome sequence of 582 subjects from 111 families in the Family Based Study, a collection of several different groups of patient cohorts.  The cohorts come from the NIH-Late Onset of Alzheimer’s Disease (NIA LOAD); the National Cell Repository for Alzheimer’s Disease (NCRAD); Alzheimer’s Disease Genetics Consortium (ADGC); and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), in addition to patient collections provided by several universities.

“Critical to this ambitious genomics project is the well-characterized patient resource developed by the National Institute on Aging,” observed NHGRI Director Eric D. Green, M.D., Ph.D. “Such a partnership between our two institutes will be immensely helpful in establishing how best to use genome sequencing to elucidate the genomic contributions to complex genetic disorders such as Alzheimer's disease.”

In addition to the WGS studies, the three sequencing centers also have begun whole exome sequencing on an additional 11,000 individuals -- 6,000 affected individuals compared to 5,000 controls. Whole exome sequencing determines the order of genomic letters for the approximately 21,000 genes in the human genome, a considerably smaller data set than the 3 billion letters examined in WGS but intensely focused on the protein-producing genes.

The current deposit of genomic data includes phenotypes, such as the Alzheimer’s symptoms of affected individuals, as well as family pedigrees and other demographic information. The rapid release of this community resource follows NIH’s standard rules of data sharing, including requirements for consent and IRB approval. Prepublication release of the raw sequence data also follows The Bermuda Principles and the Ft. Lauderdale Large Scale Biological Sequencing Projects accord of 2003.

“These studies have been designed to have enough statistical power to discover both risk alleles and protective alleles,” said Adam Felsenfeld, Ph.D., director of the NHGRI Genome Sequencing Program. “The analysis of this genomic data is just getting started, and we are looking forward to what we might learn.”

Marilyn Miller, Ph.D., who heads the NIA’s extramural Alzheimer’s disease genetics program, said the large scope of the study is key to success in identifying new genes, and with it, potential targets for more effective interventions. “Because Alzheimer’s is so complex, this broad-based collaborative effort, involving so many participants, will enable us to find potential solutions to tackle the disease.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Fungi – A Promising Source Of Chemical Diversity
Moulds and plants share similar ways in alkaloid biosynthesis .
Great Migration and African-American Genomic Diversity
Study examines genetic data to analyze regional differences in ancestry.
Faster, More Efficient CRISPR Editing
UC Berkeley scientists have developed a quicker and more efficient method to alter the genes of mice with CRISPR-Cas9, simplifying a procedure growing in popularity because of the ease of using the new gene-editing tool.
New Tool Could Change How Infectious Diseases Are Diagnosed
Scientists at the University of Utah School of Medicine, ARUP Laboratories, and IDbyDNA, Inc., have developed ultra-fast, meta-genomics analysis software called Taxonomer that dramatically improves the accuracy and speed of pathogen detection.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!