Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cyclin D1 Governs microRNA Processing in Breast Cancer

Published: Friday, December 06, 2013
Last Updated: Friday, December 06, 2013
Bookmark and Share
Cyclin D1 controls cell cycle progression and microRNA biogenesis through Dicer - a new mechanism promoting breast cancer.

Cyclin D1, a protein that helps push a replicating cell through the cell cycle  also mediates the processing and generation of mature microRNA (miRNA), according to new research publishing November 29 in Nature Communications. The research suggests that a protein strongly implicated in human cancer also governs the non-protein-coding genome. The non-coding genome, previously referred to as junk DNA, makes up most of the human genome, and unlike the coding genome, varies greatly between species.
 
“In addition to its role in regulating the cell cycle, cyclin D1 induces Dicer and thereby promotes the maturation of miRNA,” says lead researcher Richard Pestell, M.D., Ph.D., Director of the Kimmel Cancer Center at Thomas Jefferson University and Chair of the Department of Cancer Biology. Dicer is a protein that converts inactive hairpin-structured microRNA precursors into their active single stranded form. “The work supports the idea that cancer-causing proteins like cyclin D1 may drive cancer progression in part via miRNA biogenesis.”
 
Using antisense RNA, Dr. Pestell’s group was the first to show that cyclin D1 drives mammary tumor growth in vivo. In prior work, they showed that cyclin D1 regulates the non coding genome, and that the non-coding genome, in turn, regulates expression of cyclin D1. Furthermore, the group showed that many cancer patients encode a form of cyclin D1 that evades negative feedback from the non coding genome.  These attenuating feedback loops between the non coding and coding genome may be a common theme in cancer and other biological processes.
 
In the current study, the group sought to investigate the mechanism by which cyclin D1 regulates the biogenesis of non coding miRNA. Dr. Pestell and colleagues developed transgenic mice that could induce cyclin D1 expression in the breast and examined cells with cyclin D1 gene deleted.  The researchers noticed that cells lacking cyclin D1 produced less of the miRNA-processing protein, Dicer, and therefore had reduced levels of mature miRNA.
 
The group also examined cells lacking Dicer, and noted many similarities between Dicer-lacking and cyclin D1-lacking cells, in addition to failure of miRNA processing, suggesting a deeper connection between these two processes.
 
In addition to the in vitro studies, the researchers also examined over 2,200 patient samples. They found that patients with the luminal A subtype of breast cancer had increased levels of expression of both cyclin D1 and Dicer. Luminal A subtype of breast cancer is the most common type and also has the best prognosis. The more aggressive basal-like subtype of breast cancers, however, exhibited lower levels of cyclin D1 and Dicer, which would in turn globally reduce the level of mature miRNA. Indeed, lower levels of miRNAs have been observed in a number of human cancers.
 
“By linking the decrease in miRNA levels to Dicer, we show that a global decrease in miRNA processing may be important in the initiation and progression of certain cancers,” says first author, Zuoren Yu, Ph.D., who holds a joint appointment at Jefferson’s Kimmel Cancer Center and Tongji University School of Medicine in Shanghai, China.
 
Because the cyclin D1 gene has been implicated in a variety of other human cancers these findings may have broad implications for processing of non coding RNA in human tumorigenesis.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Is the Amount of Sleep Each of Us Needs Genetic?
Scientists have recently reported on the discovery of two genes, originally known for their roles in cell division, that are required for normal sleep patterns in Drosophila melanogaster.
Monday, June 22, 2015
HIV Drug Blocks Bone Metastases in Prostate Cancer
The receptor CCR5, targeted by HIV drugs, is also key in driving prostate cancer metastases, suggesting that blocking this molecule could slow prostate cancer spread.
Tuesday, December 02, 2014
Novel Cancer Vaccine Approach for Brain Tumors
Researchers unravel the mechanisms behind a novel cancer vaccine for brain tumors, paving the way for further development.
Wednesday, November 19, 2014
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!