Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Change Cell Types by Flipping a Single Switch

Published: Friday, December 06, 2013
Last Updated: Friday, December 06, 2013
Bookmark and Share
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.

With C. elegans as the animal model, lead author Misty Riddle, a doctoral student in the Rothman Lab, used transcription factor ELT-7 to change the roundworm’s pharynx cells into intestine cells in a single-step process. Every cell has the genetic potential to become any kind of cell. However, the cell’s history and the signals it receives changes the transcription factors it contains and thus determines what kind of cell it will become. A transcription factor is a protein that causes genes to turn on.

“This discovery is quite surprising because it was previously thought that only early embryonic cells could be coaxed into changing their identity this readily,” Riddle said. “The committed cells that we switched are completely remodeled and reprogrammed in every way that we tested.”

Switching one cell type into another to replace lost or damaged tissue is a major focus of regenerative medicine. The stumbling block is that cells are very resistant to changing their identity once they’ve committed to a specific kind.

“Our discovery means it may become possible to create a tissue or organ of one type directly out of one of another type,” says Joel Rothman, professor in UCSB’s Department of Molecular, Cellular and Developmental Biology, who heads the lab.

Riddle and her colleagues challenged all C. elegans cells to make the switch to intestine, but only the pharynx cells were able to do so. “We asked skin cells, muscles, neurons to change but found that only the cells in the pharynx were able to transform,” Riddle explained. “So this brings up some big questions. Why aren’t other cells changing their identities? What is special about the cells in the pharynx that allow them to change their identity into intestine?

“Since C. elegans is such an incredible model system we can really tackle these questions,” she continued. “By knocking down certain genes and manipulating the animal, we can begin to better understand the conditions under which skin cells and muscles cells might change their identities. That will help us figure out what is special about the cells in the pharynx.”

Previous studies in the Rothman lab revealed the cascade of transcription factors required for the proper development of the C. elegans intestine. Used in the later stage of intestine development, ELT-7 continues to be expressed for the life of the animal and has important functions not only in gut development but also in gut function.

This study is revolutionary in that researchers have clearly demonstrated that cells are not limited to their original identities. “Think of them as different rooms in a house,” Riddle said.

“Like cells, different rooms in your house have different structures and functions. Changing the function of a room is likely to be easier if the structures are similar, say, turning a bedroom into a living room or vice versa. But changing the bathroom into a living room presents a bigger challenge,” Riddle explained. “Just as some rooms in a house are more easily converted to others, some cell types may be more easily coaxed into changing their identity to another specific type. This doesn’t seem to depend on the relatedness of the cells in terms of when they were born or how closely related they are in their lineage.”

Maybe the heart cell can become a brain cell after all.

As demonstrated by another important finding in the UCSB study, the cells remodeled themselves in a continuous process; there were stages in the remodeling process during which the identity of the cell was mixed. “Going back to the home remodeling example,” Riddle said, “the couch and television were added to the bedroom before the bed and dresser were removed.”

“The key importance of our finding is that we have observed cells undergoing a process of morphing in which one specialized cell type is converted into another of an entirely different type,” Rothman said. “This means that it may be possible to turn any cell into any other cell in a direct conversion. In terms of our understanding of biological constraints over cell identity, we’ve shown a barrier that we believed absolutely prevents cells from switching their identity does not exist. It may one day be possible to switch an entire organ from one kind to another.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Monday, October 24, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Unexpected Role for Epigenetic Enzymes in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!