Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene-Silencing Data Now Publicly Available to Help Scientists Better Understand Disease

Published: Thursday, December 12, 2013
Last Updated: Thursday, December 12, 2013
Bookmark and Share
NIH data-sharing collaboration with Life Technologies will advance genetic and translational research, therapeutic target discovery.

For the first time, large-scale information on the biochemical makeup of small interfering RNA (siRNA) molecules is available publicly. These molecules are used in research to help scientists better understand how genes function in disease. Making this information accessible to researchers worldwide increases the potential of finding new treatments for patients.

NIH's National Center for Advancing Translational Sciences (NCATS) collaborated with Life Technologies Corporation of Carlsbad, Calif., which owns the siRNA information, to make it available to all researchers.

The siRNA molecules, which can selectively turn off genes, are used in RNA interference (RNAi) research. RNAi is a natural process that cells use to control the activity of specific genes. Its discovery led to the 2006 Nobel Prize in Physiology or Medicine.

Last month, a team of NIH scientists, led by Dr. Richard Youle, Ph.D., at the National Institute of Neurological Disorders and Stroke (NINDS), and Scott Martin, Ph.D., at NCATS, used RNAi to find genes that linked to Parkinson's disease, a devastating movement disorder.

The new genes may represent new starting points for developing treatments. The study results were published online in the Nov. 24, 2013, issue of Nature (http://www.ncbi.nlm.nih.gov/pubmed/24270810).

Scientists have harnessed the power of RNAi to study the function of many individual genes by reducing their activity levels, or silencing them. This process enables researchers to identify genes and molecules that are linked to particular diseases.

To do this, researchers use siRNAs, which are RNA molecules that have a complementary chemical makeup, or sequence, to that of a targeted gene. While the gene is silenced, researchers look for changes in cell functions to gain insights about what it normally does. By silencing genes in the cell one at a time, scientists can explore and understand their complex relation to other genes in the context of disease.

Until now, a major limitation in the scientific community's use of RNAi data has been the lack of a publicly available dataset, along with siRNA sequences directed against every human gene. Historically, providers have not allowed publishing of proprietary siRNA sequence information.

To address this problem, NCATS and Life Technologies are providing all researchers with access to siRNA data from Life Technologies' Silencer Select siRNA library, which includes 65,000 siRNA sequences targeting more than 20,000 human genes. Simultaneously, NCATS is releasing complementary data on the effects of each siRNA molecule on biological functions. All of this information is available to the public free-of-charge through NIH's public database PubChem (http://www.ncbi.nlm.nih.gov/pcsubstance?term=%22Life%20Technologies%2C%20Applied%20Biosystems%2C%20Ambion%22[sourcename]&cmd=search).

"Producing and releasing these data demonstrate NCATS' commitment to speeding the translational process for all diseases," said NCATS Director Christopher P. Austin, M.D. "The Human Genome Project showed that public data release is critical to scientific progress. Similarly, I believe that making RNAi data publicly available will revolutionize the study of biology and medicine."

Experts from the NIH RNAi initiative, administered by NCATS' Division of Pre-Clinical Innovation, conduct screens for NIH investigators. They will add new RNAi data into PubChem on an ongoing basis, making the database a growing resource for gene function studies.

"By releasing all our siRNA sequences, we are enabling novel strategies to advance fundamental understanding of biology and discovery of new potential drug targets," said Mark Stevenson, president and chief operating officer of Life Technologies.

NIH invites other companies that sell siRNA libraries and researchers who conduct genome-wide RNAi screens with the Life Technologies library to deposit sequence data and biological activity information into PubChem.

"Translation of siRNA library screening results into impactful downstream experiments is the ultimate goal of scientists using our library," said Alan Sachs, M.D., Ph.D., head of global research and development for Life Technologies. "The availability of these sequence data should greatly facilitate this effort because scientists no longer will be blinded to the actual sequence they are targeting."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Neanderthal DNA Influences Human Disease Risk
Large-scale, evolutionary analysis compares genetic data alongside electronic health records.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!