Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Identify Gene Involved in Response to Cocaine

Published: Monday, December 23, 2013
Last Updated: Sunday, December 22, 2013
Bookmark and Share
Researchers compared “J” and “N” strains of mice and used their differential responses to cocaine to identify the causative gene.

UT Southwestern neuroscience researchers have identified a gene that controls the response to cocaine by comparing closely related strains of mice often used to study addiction and behavior patterns.

The researchers suspect that the newly identified gene, Cyfip2, determines how mammals respond to cocaine, although it is too soon to tell what the indications are for humans or for addiction, said Dr. Joseph Takahashi, chair of neuroscience and a Howard Hughes Medical Institute investigator at UT Southwestern and the senior author of the study.

The findings, reported in Science, evolved from examining the genetic differences between two substrains of the standard C57BL/6 mouse strain: a “J” strain from the Jackson Laboratory (C57BL/6J) and an “N” strain from the National Institutes of Health (C57BL/6N). Researchers compared the two strains of mice and used their differential responses to cocaine to identify the causative gene.

“We found that the ‘N’ strain has accumulated mutations over time, one of which has a very strong effect on cocaine response,” Dr. Takahashi said. “We propose that CYFIP2 - the protein produced by the Cyfip2 gene - is a key regulator of cocaine response in mammals.”

The Takahashi laboratory has identified about 100 genetic differences that affect protein sequences between the two mouse strains, meaning that there are many genetic differences whose effects are not yet known, he added.

“We identified this gene by first using a forward genetics strategy to search for differences in traits between the two mouse strains. We found a difference in cocaine response between them, with the C57BL/6N strain showing a reduced behavioral response,” Dr. Takahashi said. “We then carried out genetic mapping and whole genome sequencing, which allowed us to pinpoint the Cyfip2 gene as the causative one in a rapid and unambiguous way.”

The C57BL/6J “J” mouse is the gold-standard strain for most research involving the mouse. For example, the reference sequence for the mouse genome, as well as most behavioral and physiological experiments, are based on the “J” strain. However, the International Knockout Mouse Consortium will be shifting emphasis to the “N” strain since they have created 17,000 embryonic stem cell lines with gene mutations that originate from the “N” strain. Thus, identifying genetic differences between these two mouse strains is important, Dr. Takahashi said.

“Although mouse geneticists pay close attention to the specific strains of mice that they use, it has not been generally appreciated that sublines of the same strain of mouse might differ so profoundly. Thus, a ‘C57BL/6’ mouse might appear to be the same, but in fact there are many, many sublines of this laboratory mouse, and it is important to know which exact one you are using. Since the knockout mouse project has produced so many mutations (17,000) derived from the ‘N’ strain, it will be even more important to keep in mind that not all C57BL/6 mice are the same.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Friday, July 22, 2016
New Method Detects Telomere Length for Research into Cancer, Aging
UT Southwestern Medical Center cell biologists have identified a new method for determining the length of telomeres, the endcaps of chromosomes, which can influence cancer progression and aging.
Friday, July 01, 2016
Enzyme Link Between Excessive Heart Muscle Growth, Cancer Growth
Researchers at UTSW have found that the drugs currently used to inhibit these enzymes in cancer may also be effective in treating enlargement of the heart muscle.
Saturday, April 16, 2016
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Friday, April 08, 2016
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Friday, April 08, 2016
Novel Metabolic Twist that Drives Cancer Survival
Researchers at CRI at UT Southwestern have identified a novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells.
Thursday, April 07, 2016
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
Thursday, March 31, 2016
Mutation That Causes Rare Disease
A mutation has been discovered that causes a rare systemic disorder known as XLPDR and confirmed a role for nucleic acids in immune function.
Tuesday, March 29, 2016
Promoting Liver Tissue Regeneration
Researchers at CRI have reported that inactivating a certain protein-coding gene promotes liver tissue regeneration in mammals.
Saturday, March 26, 2016
Lupus Study Shows Precision Medicine’s Potential to Define the Genetics of Autoimmune Disease
Researchers at UT Southwestern have used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to SLE.
Saturday, March 19, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
Researchers’ Work Shines LIGHT on how to Improve Cancer Immunotherapy
Researchers at UT Southwestern Medical Center have reported a strategy to make a major advancement in cancer treatment.
Thursday, March 17, 2016
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Tuesday, February 09, 2016
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Thursday, January 28, 2016
UT Southwestern Scientists Synthesize Nanoparticles
Synthetic nanoparticles to deliver tumor-suppressing therapies to damaged livers.
Wednesday, January 27, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!