Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UMMS Develops New Technology to Study Stem Cells

Published: Wednesday, January 01, 2014
Last Updated: Wednesday, January 01, 2014
Bookmark and Share
Novel method holds potential for guiding stem cell differentiation.

Scientists at UMass Medical School have developed a new technology for manipulating gene expression in human pluripotent stem cells (hPSC). Published in the journal Development, the breakthrough will allow researchers to dissect the underlying mechanisms of human stem cell differentiation and may lead to new avenues for directing development of cell types.

“The ability to control stem cell differentiation holds enormous potential for researchers studying patient-specific disease models and could advance development of new therapeutics for autoimmune diseases such as type 1 diabetes,” said Rene Maehr, PhD, assistant professor of molecular medicine and lead author of the study.

Using a natural defense system found in bacteria called clustered regularly interspaced short palindromic repeats, or CRISPR for short, researchers have shown it’s possible to adapt this programmable system to deliver transcription effectors that positively or negatively regulate gene expression to specific target genes in human pluripotent stem cells without altering the underlying genome.

CRISPR is a kind of adaptive immune system found in archaea and bacteria. It provides resistance to potential invaders, such as plasmids and phages, by recognizing and cleaving foreign genetic elements in a manner similar to how RNAi works in humans and other animals to turn off gene expression. In 2012, it was shown that CRISPR components programmed by RNA guides can deliver effector domains to specific human genes in order to activate or deactivate them.

Dr. Maehr and collaborator Scot Wolfe, PhD, associate professor of biochemistry & molecular pharmacology, have developed an RNA-guided transcription effector system using CRISPR to target developmentally relevant genes and thereby alter the differentiation status of hPSCs. This breakthrough provides researchers a new, rapid method for identifying gene networks that govern the development of stem cells into specific, mature cell types.

Ultimately, Maehr and colleagues believe this system can be used to turn hPSCs into clinically relevant cell types such as pancreatic beta cells and thymic epithelial cells, an ability that until now was out of reach.

“This system now provides a much needed platform for investigating the underlying regulators governing cell differentiation decisions, which can then be used to guide development of patient-specific stem cells into clinically relevant cell types,” said Maehr, who studies type 1 diabetes and autoimmune disorders,. “In the long run, this could open the door to personalized disease models and human stem cell-based therapies.”

“Coupling targeted gene regulatory tools with pluripotent stem cell technology, as demonstrated in our study, will open new avenues for the development of cell-based therapeutics to directly address the unmet needs of a number of patient populations with complex diseases,” said Dr. Wolfe. “We are encouraged by the potential for the CRISPR-based gene regulatory system to allow for the precise manipulation of gene expression in stem cell populations, which should facilitate the discovery of key regulators of cell differentiation needed to generate cell populations that are absent or defective in specific diseases.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!