Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Extracellular Vesicles Produced by Ocean Microbes

Published: Monday, January 13, 2014
Last Updated: Sunday, January 12, 2014
Bookmark and Share
Cyanobacteria produce and release vesicles that can serve as food parcels for marine organisms.

Marine cyanobacteria - tiny ocean plants that produce oxygen and make organic carbon using sunlight and CO2 - are primary engines of Earth’s biogeochemical and nutrient cycles. They nourish other organisms through the provision of oxygen and with their own body mass, which forms the base of the ocean food chain.

Now scientists at MIT have discovered another dimension of the outsized role played by these tiny cells: The cyanobacteria continually produce and release vesicles, spherical packages containing carbon and other nutrients that can serve as food parcels for marine organisms.

The vesicles also contain DNA, likely providing a means of gene transfer within and among communities of similar bacteria, and they may even act as decoys for deflecting viruses.

In a paper published this week in Science, postdoc Steven Biller, Professor Sallie (Penny) Chisholm, and co-authors report the discovery of large numbers of extracellular vesicles associated with the two most abundant types of cyanobacteria, Prochlorococcus and Synechoccocus. The scientists found the vesicles (each about 100 nanometers in diameter) suspended in cultures of the cyanobacteria as well as in seawater samples taken from both the nutrient-rich coastal waters of New England and the nutrient-sparse waters of the Sargasso Sea.

Although extracellular vesicles were discovered in 1967 and have been studied in human-related bacteria, this is the first evidence of their existence in the ocean.

“The finding that vesicles are so abundant in the oceans really expands the context in which we need to understand these structures,” says Biller, first author on the Science paper. “Vesicles are a previously unrecognized and unexplored component of the dissolved organic carbon in marine ecosystems, and they could prove to be an important vehicle for genetic and biogeochemical exchange in the oceans.”

Billions and billions of vesicles
Biller’s metagenomic analysis of the vesicles taken from the seawater revealed DNA from a diverse array of bacteria, suggesting that vesicle production is common to many marine microbes. The researchers estimate the global production of vesicles by Prochlorococcus alone at a billion billion billion per day - representing a notable addition of carbon to the scarce nutrient pool of the open seas.

Lab experiments showed that the vesicles are stable, lasting two weeks or more, and that the organic carbon they contain provides enough nutrients to support the growth of nonphotosynthetic bacteria.

Given the dearth of nutrients in the open ocean, the daily release by an organism of a packet one-sixth the size of its own body is puzzling, Chisholm says. Prochlorococcus has lost the ability to neutralize certain chemicals and depends on nonphotosynthetic bacteria to break down chemicals that would otherwise act as toxins. It’s possible the vesicle “snack packets” help make this relationship mutually beneficial.

“Prochlorococcus is the smallest genome that can make organic carbon from sunlight and carbon dioxide and it’s packaging this carbon and releasing it into the seawater around it,” says Chisholm, the Lee and Geraldine Martin Professor of Environmental Studies in MIT’s Department of Civil and Environmental Engineering and Department of Biology, who is lead investigator of the study. “There must be an evolutionary advantage to doing this. Our challenge is to figure out what it is.”

Because the vesicles also contain DNA and RNA, the researchers surmise they could play a role in horizontal gene transfer, a means for developing genetic diversity and sharing ecologically useful genes among the Prochlorococcus metapopulation.

Marine decoy
But perhaps the most unusual potential role of the vesicles is as a decoy for predators: Electron microscopy shows phages (viruses that attack bacteria) attached to vesicles. When a phage injects its DNA into the vesicle (making it impossible for the phage to reproduce in a living cell), it renders the phage inactive, according to Biller, who says the vesicles could be acting like chaff released by a fighter jet to divert missile attacks. A phage attached to a vesicle is effectively taken out of the battle, providing a creative means of deterrence.

“Marine cyanobacteria of the genera Prochlorococcus and Synechoccocus are the two most abundant phototrophs,” says biologist David Scanlan, a professor at the University of Warwick who was not involved in this research. “By releasing extracellular vesicles these organisms shed new light on the importance of such particles in the largest ecosystem on Earth - the open ocean - with implications for marine carbon cycling, mechanisms of horizontal gene transfer, and as a defense against phage attack.”

The vesicles first came to Chisholm’s attention in 2008 when Anne Thompson, then a graduate student, noticed little “blebs” on the surface of Prochlorococcus cells while using electron microscopy. Neither she nor Chisholm nor other ocean biologists who saw the photo were able to identify the spheres. But Biller, who joined Chisholm’s lab in 2010 after completing his graduate studies on soil bacteria, recognized them as vesicles, and began the study resulting in the Science paper.

In addition to Biller, Chisholm, and Thompson, other co-authors on the paper are Florence Schubotz and Roger Summons, of MIT’s Department of Earth, Atmospheric and Planetary Sciences, and Sara Roggensack, a former MIT lab technician who is now a graduate student at Tufts University.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Brain Tumor Weakness Identified
Discovery could offer a new target for treatment of glioblastoma.
Thursday, April 09, 2015
New Nanodevice Defeats Drug Resistance
Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.
Wednesday, March 04, 2015
New Nanodevice Defeats Drug Resistance
Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.
Tuesday, March 03, 2015
Epigenomics of Alzheimer’s Disease Progression
Study of epigenomic modifications reveals immune basis of Alzheimer's disease.
Thursday, February 19, 2015
Proteins Drive Cancer Cells To Change States
When RNA-binding proteins are turned on, cancer cells get locked in a proliferative state.
Monday, December 15, 2014
New Way To Turn Genes On
Technique allows rapid, large-scale studies of gene function.
Thursday, December 11, 2014
New Device Could Make Large Biological Circuits Practical
Innovation from MIT could allow many biological components to be connected to produce predictable effects.
Tuesday, November 25, 2014
Fast Modeling Of Cancer Mutations
New genome-editing technique enables rapid analysis of genes mutated in tumors.
Thursday, October 23, 2014
Chemists Recruit Anthrax to Deliver Cancer Drugs
With some tinkering, a deadly protein becomes an efficient carrier for antibody drugs.
Tuesday, September 30, 2014
Biologists Find An Early Sign Of Cancer
Patients show boost in certain amino acids years before diagnosis of pancreatic cancer.
Tuesday, September 30, 2014
Battling Superbugs
Two new technologies could enable novel strategies for combating drug-resistant bacteria.
Tuesday, September 23, 2014
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!