Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

A Digital Test for Toxic Genes

Published: Thursday, January 30, 2014
Last Updated: Friday, January 31, 2014
Bookmark and Share
TAU researchers develop a computer algorithm that identifies genes whose activation is lethal to bacteria.

Like little factories, cells metabolize raw materials and convert them into chemical compounds. Biotechnologists take advantage of this ability, using microorganisms to produce pharmaceuticals and biofuels. To boost output to an industrial scale and create new types of chemicals, biotechnologists manipulate the microorganisms' natural metabolism, often by "overexpressing" certain genes in the cell. But such metabolic engineering is hampered by the fact that many genes become toxic to the cell when overexpressed.

Now, Allon Wagner, Uri Gophna, and Eytan Ruppin of Tel Aviv University'sBlavatnik School of Computer Science and Department of Molecular Microbiology and Biotechnology, along with researchers at the Weizmann Institute of Science, have developed a computer algorithm that predicts which metabolic genes are lethal to cells when overexpressed. The findings, published in Proceedings of the National Academy of Sciences, could help guide metabolic engineering to produce new chemicals in more cost-effective ways.

"In the lab, biotechnologists often determine which genes can be overexpressed using trial and error," said Wagner. "We can save them a lot of time and money by ruling out certain possibilities and highlighting other, more promising ones."

Gaining an EDGE
When metabolic genes are expressed, the genetic information they contain is converted into proteins, which catalyze the chemical reactions necessary for life. Overexpression means that greater-than-normal amounts of proteins are produced. Biotechnologists typically overexpress native genes of an industrial microorganism to boost a certain metabolic pathway in the cell, thus increasing the production of desired compounds. Sometimes they overexpress foreign genes — genes transferred from other organisms — in an industrial microbe to build new metabolic pathways and allow it to synthesize new compounds. But they often find that their efforts are hindered by the toxicity of the genes that they wish to overexpress.

Prof. Ruppin's laboratory builds large-scale software models of cellular metabolism, one of the most fundamental aspects of life. These models convert physical, chemical, and biological information into a set of mathematical equations, allowing scientists to learn how cells work and explore what happens if they are tweaked in certain ways. The newly developed algorithm, Expression Dependent Gene Effects, or EDGE, predicts what happens if scientists manipulate cells to overexpress certain genes. EDGE allows biotechnologists to foresee cases in which the overexpressed genes become toxic and then direct their efforts toward other genes.

To validate their method, TAU researchers used genetic manipulation tools to overexpress 26 different genes in E. coli bacterial cells. Comparing the results of their computer simulations with the actual growth of the overexpressed strains that was measured in the lab, they saw that EDGE was able to predict which of the overexpressed genes turned out to be lethal to E. coli. EDGE was also successful in identifying cases of foreign genes that were toxic to E. coli, as the researchers learned from comparing the simulations' results with data collected by their collaborators at the Weizmann Institute of Science.

Beyond bacteria
EDGE's applications appear to extend beyond bacteria. The researchers conducted tests showing that the genes EDGE predicted to be toxic when overexpressed are expressed at low levels not only in microorganisms like bacteria, but also in multicellular organisms, including humans. The researchers say these results reflect the vital evolutionary need to keep the expression of potentially deleterious genes in check.

"Although EDGE's current focus is biotechnology, gene overexpression also plays a central part in many human diseases, particularly in cancer. We hope that future work will apply EDGE to those directions," Wagner said.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos