Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Neanderthals' Genetic Legacy

Published: Thursday, January 30, 2014
Last Updated: Friday, January 31, 2014
Bookmark and Share
Humans inherited variants affecting disease risk, infertility, skin and hair characteristics

Remnants of Neanderthal DNA in modern humans are associated with genes affecting type 2 diabetes, Crohn’s disease, lupus, biliary cirrhosis and smoking behavior. They also concentrate in genes that influence skin and hair characteristics. At the same time, Neanderthal DNA is conspicuously low in regions of the X chromosome and testes-specific genes.

The research, led by Harvard Medical School geneticists and published Jan. 29 in Nature, suggests ways in which genetic material inherited from Neanderthals has proven both adaptive and maladaptive for modern humans. (A related paper by a separate team was published concurrently in Science.)

“Now that we can estimate the probability that a particular genetic variant arose from Neanderthals, we can begin to understand how that inherited DNA affects us,” said David Reich, professor of genetics at HMS and senior author of the paper. “We may also learn more about what Neanderthals themselves were like.”

In the past few years, studies by groups including Reich’s have revealed that present-day people of non-African ancestry trace an average of about 2 percent of their genomes to Neanderthals—a legacy of interbreeding between humans and Neanderthals that the team previously showed occurred between 40,000 to 80,000 years ago. (Indigenous Africans have little or no Neanderthal DNA because their ancestors did not breed with Neanderthals, who lived in Europe and Asia.)

Several teams have since been able to flag Neanderthal DNA at certain locations in the non-African human genome, but until now, there was no survey of Neanderthal ancestry across the genome and little understanding of the biological significance of that genetic heritage.

“The story of early human evolution is captivating in itself, yet it also has far-reaching implications for understanding the organization of the modern human genome,” said Irene A. Eckstrand of the National Institutes of Health’s National Institute of General Medical Sciences, which partially funded the research. “Every piece of this story that we uncover tells us more about our ancestors’ genetic contributions to modern human health and disease.”

Deserts and Oases
Reich and colleagues—including Svante Pääbo of the Max Planck Institute for Evolutionary Anthropology in Germany—analyzed genetic variants in 846 people of non-African heritage, 176 people from sub-Saharan Africa, and a 50,000-year-old Neanderthal whose high-quality genome sequence the team published in 2013.

The most powerful information the researchers used to determine whether a gene variant came from a Neanderthal was if the variant appeared in some non-Africans and the Neanderthal but not in the sub-Saharan Africans.

Using this and other types of information, the team found that some areas of the modern non-African human genome were rich in Neanderthal DNA, which may have been helpful for human survival, while other areas were more like “deserts” with far less Neanderthal ancestry than average.

The barren areas were the “most exciting” finding, said first author Sriram Sankararaman of HMS and the Broad Institute. “It suggests the introduction of some of these Neanderthal mutations was harmful to the ancestors of non-Africans and that these mutations were later removed by the action of natural selection.”

The team showed that the areas with reduced Neanderthal ancestry tend to cluster in two parts of our genomes: genes that are most active in the male germline (the testes) and genes on the X chromosome. This pattern has been linked in many animals to a phenomenon known as hybrid infertility, where the offspring of a male from one subspecies and a female from another have low or no fertility.

“This suggests that when ancient humans met and mixed with Neanderthals, the two species were at the edge of biological incompatibility,” said Reich, who is also a senior associate member of the Broad Institute and an investigator at the Howard Hughes Medical Institute. Present-day human populations, which can be separated from one another by as much as 100,000 years (such as West Africans and Europeans), are fully compatible with no evidence of increased male infertility. In contrast, ancient human and Neanderthal populations apparently faced interbreeding challenges after 500,000 years of evolutionary separation.

“It is fascinating that these types of problems could arise over that short a time scale,” Reich said.

A Lasting Heritage
The team also measured how Neanderthal DNA present in human genomes today affects keratin production and disease risk.

Neanderthal ancestry is increased in genes affecting keratin filaments. This fibrous protein lends toughness to skin, hair and nails and can be beneficial in colder environments by providing thicker insulation, said Reich. “It’s tempting to think that Neanderthals were already adapted to the non-African environment and provided this genetic benefit to humans,” he speculated.

The researchers also showed that nine previously identified human genetic variants known to be associated with specific traits likely came from Neanderthals. These variants affect diseases related to immune function and also some behaviors, such as the ability to stop smoking. The team expects that more variants will be found to have Neanderthal origins.

The team has already begun trying to improve their human genome ancestry results by analyzing multiple Neanderthals instead of one. Together with colleagues in Britain, they also have developed a test that can detect most of the approximately 100,000 mutations of Neanderthal origin they discovered in people of European ancestry; they are conducting an analysis in a biobank containing genetic data from half a million Britons.

“I expect that this study will result in a better and more systematic understanding of how Neanderthal ancestry affects variation in human traits today,” said Sankararaman.

As another next step, the team is studying genome sequences from people from Papua New Guinea to build a database of genetic variants that can be compared to those of Denisovans, a third population of ancient humans that left most of its genetic traces in Oceania but little in mainland Eurasia.

This research was supported by the Presidential Innovation Fund of the Max Planck Society, NSF HOMINID grant 1032255, NIH grant GM100233 and the Howard Hughes Medical Institute.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!