Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH, Industry and Non-Profits Join Forces to Speed Validation of Disease Targets

Published: Tuesday, February 11, 2014
Last Updated: Tuesday, February 11, 2014
Bookmark and Share
Goal is to develop new treatments earlier, beginning with Alzheimer's, type 2 diabetes, and autoimmune disorders.

The National Institutes of Health, 10 biopharmaceutical companies and several nonprofit organizations have launched an unprecedented partnership to transform the current model for identifying and validating the most promising biological targets of disease for new diagnostics and drug development.

The Accelerating Medicines Partnership (AMP) aims to distinguish biological targets of disease most likely to respond to new therapies and characterize biological indicators of disease, known as biomarkers.

Through the Foundation for the NIH (FNIH), AMP partners will invest more than $230 million over five years in the first projects, which focus on Alzheimer's disease, type 2 diabetes, and the autoimmune disorders rheumatoid arthritis and systemic lupus erythematosus (lupus).

A critical and element of the partnership is the agreement that the data and analyses generated will be made publicly available to the broad biomedical community. The three- to five-year, milestone-driven pilot projects in these disease areas could set the stage for broadening AMP to other diseases and conditions.

"Patients and their caregivers are relying on science to find better and faster ways to detect and treat disease and improve their quality of life," said NIH Director Francis S. Collins, M.D., Ph.D. "Currently, we are investing a great deal of money and time in avenues with high failure rates, while patients and their families wait. All sectors of the biomedical enterprise agree that new approaches are sorely needed."

"The good news is that recent dramatic advances in basic research are opening new windows of opportunity for therapeutics," continued Dr. Collins. "But this challenge is beyond the scope of any one of us and it's time to work together in new ways to increase our collective odds of success. We believe this partnership is an important first step and represents the most sweeping effort to date to tackle this vital issue."

As a result of technological revolutions in genomics, imaging, and more, researchers have been able to identify many changes in genes, proteins, and other molecules that predispose to disease and influence disease progression. While researchers have identified thousands of such biological changes that hold promise as biomarkers and drug targets, only a small number have been pursued. Choosing the wrong target can result in failures late in the development process, costing time, money, and ultimately, lives. Currently, developing a drug from early discovery through U.S. Food and Drug Administration approval takes well over a decade and has a failure rate of more than 95 percent. As a consequence, each success costs more than $1 billion.

"The AMP rallies scientific key players of the innovation ecosystem in a more unified way to address one of the key challenges to Biopharma drug discovery and development," said Mikael Dolsten, M.D., Ph.D., President of Worldwide Research and Development at Pfizer. "This type of novel collaboration will leverage the strengths of both industry and NIH to ensure we expedite translation of scientific knowledge into next generation therapies to address the urgent needs of Alzheimer's, diabetes and RA/lupus patients."

AMP has been more than two years in the making, with intense interactions between scientists in the public and private sectors, progressive refinement of the goals, strategy development support from the Boston Consulting Group, and scientific project and partnership management by the FNIH. Through this effort, AMP partners have developed research plans and are sharing costs, expertise, and resources in an integrated governance structure that enables the best informed contributions to science from all participants.

The research highlights for each disease area are:

ALZHEIMER'S DISEASE

• Identify biomarkers that can predict clinical outcomes by incorporating an expanded set of biomarkers into four major NIH-funded clinical trials, which include industry support, designed to delay or prevent disease.
• Conduct largeñscale, systems biology analyses of human patient brain tissue samples with Alzheimer's disease to validate biological targets that play key roles in disease progression, and increase understanding of molecular networks involved in the disease, to identify new potential therapeutic targets.

TYPE 2 DIABETES

• Build a knowledge portal of DNA sequence, functional genomic and epigenomic information, and clinical data from studies on type 2 diabetes and its heart and kidney complications. The portal will include existing data and new data from studies involving 100,000ñ150,000 individuals. The rich collection of curated and collated information in this portal will provide an opportunity to identify the most promising therapeutic targets for diabetes from the growing mountain of potentially relevant data.
• Focus on DNA regions that might be critical for the development or progression of type 2 diabetes and search for natural variations in targeted populations that might predict the likelihood of success of drug development aimed at these targets.

RHEUMATOID ARTHRITIS AND LUPUS

• Collect and analyze tissue and blood samples from people with rheumatoid arthritis and lupus to pinpoint biological changes at the single cell level, to allow comparisons across the diseases and provide insights into key aspects of the disease process.
• Identify differences between rheumatoid arthritis patients who respond to current therapies and those who do not, and provide a better systems-level understanding of disease mechanisms in RA and lupus.

Highly collaborative steering committees with representation from public-and private-sector partners will be established for each disease area to oversee the research plans. The steering committees will be managed by FNIH under the direction of an AMP executive committee comprised of leaders from NIH, industry, the FDA, and patient advocacy organizations.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Gene Therapy for Metabolic Liver Diseases
Researchers have tested gene therapy in pigs from hereditary tyrosinemia type 1, with corrected liver cells being transplanted into the diseased liver.
Gene Terapy for Muscle Wasting Developed
New gene therapy could save millions of people suffering from muscle wasting disease.
Gene-Editing 'Toolbox' Targets Multiple Genes Simultaneously
Researchers have designed a system that modifies, or edits, multiple genes in a genome at once while minimising unintentional effects.
Discovering the First Farmers
Genetic analyses reveal a collection of highly distinct groups in the Near East and Europe at the dawn of agriculture.
Fighting Cancer Through Protein Pathways
Researchers have found a new drug target within a protein production pathway critical to regulating growth and proliferation of cells.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!