Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Studying Adhesion Forces Between Cancer Cells

Published: Tuesday, February 18, 2014
Last Updated: Tuesday, February 18, 2014
Bookmark and Share
JPK Instruments reports on the current cancer research project of Dr Florian T Ludwig at the Institute of Physiology II, University Hospital Münster, using a CellHesion® 200 to measure the adhesive forces between tumor cells.

JPK Instruments reports on the current cancer research project of Dr Florian T Ludwig at the Institute of Physiology II, University Hospital Münster, who uses a CellHesion® 200 to measure the adhesive forces between tumor cells.

The Institute of Physiology II is part of the Medical Faculty of the Westfälische Wilhelms-Universität Münster. It brings together the areas of physiology, cell migration and ion transporters through the study of properties of cells on the nanoscale.

Dr Florian T Ludwig is a member of the team of Professor Albrecht Schwab and Dr Christian Stock. These researchers are interested in how ion transport across the plasma membrane affects tumor cell motility and, thus, metastasis. Occurring prior to migration and invasion, one early step of the so-called metastatic cascade is the detachment of single tumor cells or cell clusters from the primary neoplasm. This process is accompanied by a controlled loss of cell-cell adhesions caused by the release of bonds between adhesion molecules such as cadherins. Hence, the adhesion force between tumor cells might predict the tumor's malignancy. Tumor cells that exhibit low cell-cell adhesion forces would represent a highly metastatic phenotype since they detach more easily.

With the help of Mike Wälte from the group of the Head of the Institute, Professor Hans Oberleithner and Dr Hermann Schillers, Dr. Ludwig measures cell-cell adhesion forces in tumor cells. This is based on the group's distinguished expertise of nearly two decades' experience in atomic force microscopy, AFM.

For the experiments, a single tumor cell is attached to the cantilever of a JPK CellHesion® 200 system using a bionic cell adhesive. A second, adherent tumor cell is then approached with the cantilever until the two cells come into contact. After a defined contact time, the cantilever is retracted until the two cells are separated. The strength of the cell-cell bonds that formed while the cells were in contact is estimated by recording the force necessary to separate the cells. Here, the key feature of the CellHesion® 200 system is its ability of the cantilever sensor lifting system to travel more than 110 µm giving a clear benefit for the researchers whose aim is to separate two tumor cells both gently, reproducibly and efficiently without damage. With the technique described here, cell-cell adhesion forces can be quantified.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Studying the Organisation of Genomic DNA
JPK Instruments have reported on the use of the NanoTracker™ Optical Tweezers system in the Laboratory of Molecular Genetics in the Leiden Institute of Chemistry at Leiden University.
Tuesday, September 09, 2014
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
Mathematical Model Helps Show How Zebrafish Get Their Stripes
The iconic yellow and blue stripes of zebrafish form dynamically as young fish develop and grow. A mathematical model developed by Brown University researchers helps to show how pigment cells interact to form the pattern.
Epigenome Influenced by Habitat and Lifestyle
Study on Pygmy hunter-gatherer populations and Bantu farmers in Central Africa shows that habitat and lifestyle can impact the epigenome.
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos